Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoass Structured version   Visualization version   GIF version

Theorem rngoass 32875
Description: Associative law for the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringi.1 𝐺 = (1st𝑅)
ringi.2 𝐻 = (2nd𝑅)
ringi.3 𝑋 = ran 𝐺
Assertion
Ref Expression
rngoass ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = (𝐴𝐻(𝐵𝐻𝐶)))

Proof of Theorem rngoass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringi.1 . . . . . 6 𝐺 = (1st𝑅)
2 ringi.2 . . . . . 6 𝐻 = (2nd𝑅)
3 ringi.3 . . . . . 6 𝑋 = ran 𝐺
41, 2, 3rngoi 32868 . . . . 5 (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
54simprd 478 . . . 4 (𝑅 ∈ RingOps → (∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
65simpld 474 . . 3 (𝑅 ∈ RingOps → ∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))))
7 simp1 1054 . . . . . 6 ((((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) → ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
87ralimi 2936 . . . . 5 (∀𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) → ∀𝑧𝑋 ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
98ralimi 2936 . . . 4 (∀𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) → ∀𝑦𝑋𝑧𝑋 ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
109ralimi 2936 . . 3 (∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) → ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
116, 10syl 17 . 2 (𝑅 ∈ RingOps → ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
12 oveq1 6556 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐻𝑦) = (𝐴𝐻𝑦))
1312oveq1d 6564 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐻𝑦)𝐻𝑧) = ((𝐴𝐻𝑦)𝐻𝑧))
14 oveq1 6556 . . . 4 (𝑥 = 𝐴 → (𝑥𝐻(𝑦𝐻𝑧)) = (𝐴𝐻(𝑦𝐻𝑧)))
1513, 14eqeq12d 2625 . . 3 (𝑥 = 𝐴 → (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ↔ ((𝐴𝐻𝑦)𝐻𝑧) = (𝐴𝐻(𝑦𝐻𝑧))))
16 oveq2 6557 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐻𝑦) = (𝐴𝐻𝐵))
1716oveq1d 6564 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐻𝑦)𝐻𝑧) = ((𝐴𝐻𝐵)𝐻𝑧))
18 oveq1 6556 . . . . 5 (𝑦 = 𝐵 → (𝑦𝐻𝑧) = (𝐵𝐻𝑧))
1918oveq2d 6565 . . . 4 (𝑦 = 𝐵 → (𝐴𝐻(𝑦𝐻𝑧)) = (𝐴𝐻(𝐵𝐻𝑧)))
2017, 19eqeq12d 2625 . . 3 (𝑦 = 𝐵 → (((𝐴𝐻𝑦)𝐻𝑧) = (𝐴𝐻(𝑦𝐻𝑧)) ↔ ((𝐴𝐻𝐵)𝐻𝑧) = (𝐴𝐻(𝐵𝐻𝑧))))
21 oveq2 6557 . . . 4 (𝑧 = 𝐶 → ((𝐴𝐻𝐵)𝐻𝑧) = ((𝐴𝐻𝐵)𝐻𝐶))
22 oveq2 6557 . . . . 5 (𝑧 = 𝐶 → (𝐵𝐻𝑧) = (𝐵𝐻𝐶))
2322oveq2d 6565 . . . 4 (𝑧 = 𝐶 → (𝐴𝐻(𝐵𝐻𝑧)) = (𝐴𝐻(𝐵𝐻𝐶)))
2421, 23eqeq12d 2625 . . 3 (𝑧 = 𝐶 → (((𝐴𝐻𝐵)𝐻𝑧) = (𝐴𝐻(𝐵𝐻𝑧)) ↔ ((𝐴𝐻𝐵)𝐻𝐶) = (𝐴𝐻(𝐵𝐻𝐶))))
2515, 20, 24rspc3v 3296 . 2 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) → ((𝐴𝐻𝐵)𝐻𝐶) = (𝐴𝐻(𝐵𝐻𝐶))))
2611, 25mpan9 485 1 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = (𝐴𝐻(𝐵𝐻𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897   × cxp 5036  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  AbelOpcablo 26782  RingOpscrngo 32863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-1st 7059  df-2nd 7060  df-rngo 32864
This theorem is referenced by:  rngomndo  32904  rngoneglmul  32912  rngonegrmul  32913  zerdivemp1x  32916  isdrngo2  32927  crngm23  32971  crngm4  32972  prnc  33036
  Copyright terms: Public domain W3C validator