Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpoinvcl | Structured version Visualization version GIF version |
Description: A group element's inverse is a group element. (Contributed by NM, 27-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpinvcl.1 | ⊢ 𝑋 = ran 𝐺 |
grpinvcl.2 | ⊢ 𝑁 = (inv‘𝐺) |
Ref | Expression |
---|---|
grpoinvcl | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvcl.1 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
2 | eqid 2610 | . . 3 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
3 | grpinvcl.2 | . . 3 ⊢ 𝑁 = (inv‘𝐺) | |
4 | 1, 2, 3 | grpoinvval 26761 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GId‘𝐺))) |
5 | 1, 2 | grpoinveu 26757 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ∃!𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)) |
6 | riotacl 6525 | . . 3 ⊢ (∃!𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GId‘𝐺) → (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)) ∈ 𝑋) | |
7 | 5, 6 | syl 17 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = (GId‘𝐺)) ∈ 𝑋) |
8 | 4, 7 | eqeltrd 2688 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∃!wreu 2898 ran crn 5039 ‘cfv 5804 ℩crio 6510 (class class class)co 6549 GrpOpcgr 26727 GIdcgi 26728 invcgn 26729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-grpo 26731 df-gid 26732 df-ginv 26733 |
This theorem is referenced by: grpoinvid1 26766 grpoinvid2 26767 grpolcan 26768 grpo2inv 26769 grpoinvf 26770 grpoinvop 26771 grpodivinv 26774 grpoinvdiv 26775 grpodivf 26776 grpomuldivass 26779 grponpcan 26781 ablodivdiv4 26792 vcm 26815 rngonegcl 32896 isdrngo2 32927 |
Copyright terms: Public domain | W3C validator |