Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdomn3 Structured version   Visualization version   GIF version

Theorem isdomn3 36801
Description: Nonzero elements form a multiplicative submonoid of any domain. (Contributed by Stefan O'Rear, 11-Sep-2015.)
Hypotheses
Ref Expression
isdomn3.b 𝐵 = (Base‘𝑅)
isdomn3.z 0 = (0g𝑅)
isdomn3.u 𝑈 = (mulGrp‘𝑅)
Assertion
Ref Expression
isdomn3 (𝑅 ∈ Domn ↔ (𝑅 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))

Proof of Theorem isdomn3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdomn3.b . . 3 𝐵 = (Base‘𝑅)
2 eqid 2610 . . 3 (.r𝑅) = (.r𝑅)
3 isdomn3.z . . 3 0 = (0g𝑅)
41, 2, 3isdomn 19115 . 2 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
5 eqid 2610 . . . . . 6 (1r𝑅) = (1r𝑅)
65, 3isnzr 19080 . . . . 5 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ 0 ))
76anbi1i 727 . . . 4 ((𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ 0 ) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
8 anass 679 . . . 4 (((𝑅 ∈ Ring ∧ (1r𝑅) ≠ 0 ) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ (𝑅 ∈ Ring ∧ ((1r𝑅) ≠ 0 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))))
97, 8bitri 263 . . 3 ((𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ (𝑅 ∈ Ring ∧ ((1r𝑅) ≠ 0 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))))
101, 5ringidcl 18391 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
11 eldifsn 4260 . . . . . . . 8 ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ↔ ((1r𝑅) ∈ 𝐵 ∧ (1r𝑅) ≠ 0 ))
1211baibr 943 . . . . . . 7 ((1r𝑅) ∈ 𝐵 → ((1r𝑅) ≠ 0 ↔ (1r𝑅) ∈ (𝐵 ∖ { 0 })))
1310, 12syl 17 . . . . . 6 (𝑅 ∈ Ring → ((1r𝑅) ≠ 0 ↔ (1r𝑅) ∈ (𝐵 ∖ { 0 })))
141, 2ringcl 18384 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝑅)𝑦) ∈ 𝐵)
15143expb 1258 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑅)𝑦) ∈ 𝐵)
1615biantrurd 528 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(.r𝑅)𝑦) ≠ 0 ↔ ((𝑥(.r𝑅)𝑦) ∈ 𝐵 ∧ (𝑥(.r𝑅)𝑦) ≠ 0 )))
17 eldifsn 4260 . . . . . . . . . 10 ((𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑥(.r𝑅)𝑦) ∈ 𝐵 ∧ (𝑥(.r𝑅)𝑦) ≠ 0 ))
1816, 17syl6bbr 277 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(.r𝑅)𝑦) ≠ 0 ↔ (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
1918imbi2d 329 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → (((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ≠ 0 ) ↔ ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
20192ralbidva 2971 . . . . . . 7 (𝑅 ∈ Ring → (∀𝑥𝐵𝑦𝐵 ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ≠ 0 ) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
21 con34b 305 . . . . . . . . 9 (((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ (¬ (𝑥 = 0𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ))
22 neanior 2874 . . . . . . . . . 10 ((𝑥0𝑦0 ) ↔ ¬ (𝑥 = 0𝑦 = 0 ))
23 df-ne 2782 . . . . . . . . . 10 ((𝑥(.r𝑅)𝑦) ≠ 0 ↔ ¬ (𝑥(.r𝑅)𝑦) = 0 )
2422, 23imbi12i 339 . . . . . . . . 9 (((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ≠ 0 ) ↔ (¬ (𝑥 = 0𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ))
2521, 24bitr4i 266 . . . . . . . 8 (((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ≠ 0 ))
26252ralbii 2964 . . . . . . 7 (∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ≠ 0 ))
27 impexp 461 . . . . . . . . . 10 ((((𝑥𝐵𝑦𝐵) ∧ (𝑥0𝑦0 )) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
28 an4 861 . . . . . . . . . . . 12 (((𝑥𝐵𝑦𝐵) ∧ (𝑥0𝑦0 )) ↔ ((𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )))
29 eldifsn 4260 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐵 ∖ { 0 }) ↔ (𝑥𝐵𝑥0 ))
30 eldifsn 4260 . . . . . . . . . . . . 13 (𝑦 ∈ (𝐵 ∖ { 0 }) ↔ (𝑦𝐵𝑦0 ))
3129, 30anbi12i 729 . . . . . . . . . . . 12 ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) ↔ ((𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )))
3228, 31bitr4i 266 . . . . . . . . . . 11 (((𝑥𝐵𝑦𝐵) ∧ (𝑥0𝑦0 )) ↔ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })))
3332imbi1i 338 . . . . . . . . . 10 ((((𝑥𝐵𝑦𝐵) ∧ (𝑥0𝑦0 )) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })) ↔ ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
3427, 33bitr3i 265 . . . . . . . . 9 (((𝑥𝐵𝑦𝐵) → ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))) ↔ ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
35342albii 1738 . . . . . . . 8 (∀𝑥𝑦((𝑥𝐵𝑦𝐵) → ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))) ↔ ∀𝑥𝑦((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
36 r2al 2923 . . . . . . . 8 (∀𝑥𝐵𝑦𝐵 ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })) ↔ ∀𝑥𝑦((𝑥𝐵𝑦𝐵) → ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
37 r2al 2923 . . . . . . . 8 (∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ∀𝑥𝑦((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
3835, 36, 373bitr4ri 292 . . . . . . 7 (∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
3920, 26, 383bitr4g 302 . . . . . 6 (𝑅 ∈ Ring → (∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
4013, 39anbi12d 743 . . . . 5 (𝑅 ∈ Ring → (((1r𝑅) ≠ 0 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
41 isdomn3.u . . . . . . 7 𝑈 = (mulGrp‘𝑅)
4241ringmgp 18376 . . . . . 6 (𝑅 ∈ Ring → 𝑈 ∈ Mnd)
4341, 1mgpbas 18318 . . . . . . . . 9 𝐵 = (Base‘𝑈)
4441, 5ringidval 18326 . . . . . . . . 9 (1r𝑅) = (0g𝑈)
4541, 2mgpplusg 18316 . . . . . . . . 9 (.r𝑅) = (+g𝑈)
4643, 44, 45issubm 17170 . . . . . . . 8 (𝑈 ∈ Mnd → ((𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈) ↔ ((𝐵 ∖ { 0 }) ⊆ 𝐵 ∧ (1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
47 3anass 1035 . . . . . . . 8 (((𝐵 ∖ { 0 }) ⊆ 𝐵 ∧ (1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })) ↔ ((𝐵 ∖ { 0 }) ⊆ 𝐵 ∧ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
4846, 47syl6bb 275 . . . . . . 7 (𝑈 ∈ Mnd → ((𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈) ↔ ((𝐵 ∖ { 0 }) ⊆ 𝐵 ∧ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))))
49 difss 3699 . . . . . . . 8 (𝐵 ∖ { 0 }) ⊆ 𝐵
5049biantrur 526 . . . . . . 7 (((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })) ↔ ((𝐵 ∖ { 0 }) ⊆ 𝐵 ∧ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
5148, 50syl6bbr 277 . . . . . 6 (𝑈 ∈ Mnd → ((𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈) ↔ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
5242, 51syl 17 . . . . 5 (𝑅 ∈ Ring → ((𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈) ↔ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
5340, 52bitr4d 270 . . . 4 (𝑅 ∈ Ring → (((1r𝑅) ≠ 0 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))
5453pm5.32i 667 . . 3 ((𝑅 ∈ Ring ∧ ((1r𝑅) ≠ 0 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))) ↔ (𝑅 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))
559, 54bitri 263 . 2 ((𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ (𝑅 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))
564, 55bitri 263 1 (𝑅 ∈ Domn ↔ (𝑅 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031  wal 1473   = wceq 1475  wcel 1977  wne 2780  wral 2896  cdif 3537  wss 3540  {csn 4125  cfv 5804  (class class class)co 6549  Basecbs 15695  .rcmulr 15769  0gc0g 15923  Mndcmnd 17117  SubMndcsubmnd 17157  mulGrpcmgp 18312  1rcur 18324  Ringcrg 18370  NzRingcnzr 19078  Domncdomn 19101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mgp 18313  df-ur 18325  df-ring 18372  df-nzr 19079  df-domn 19105
This theorem is referenced by:  deg1mhm  36804
  Copyright terms: Public domain W3C validator