Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdomn3 Structured version   Unicode version

Theorem isdomn3 29525
Description: Nonzero elements form a multiplicative submonoid of any domain. (Contributed by Stefan O'Rear, 11-Sep-2015.)
Hypotheses
Ref Expression
isdomn3.b  |-  B  =  ( Base `  R
)
isdomn3.z  |-  .0.  =  ( 0g `  R )
isdomn3.u  |-  U  =  (mulGrp `  R )
Assertion
Ref Expression
isdomn3  |-  ( R  e. Domn 
<->  ( R  e.  Ring  /\  ( B  \  {  .0.  } )  e.  (SubMnd `  U ) ) )

Proof of Theorem isdomn3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdomn3.b . . 3  |-  B  =  ( Base `  R
)
2 eqid 2438 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
3 isdomn3.z . . 3  |-  .0.  =  ( 0g `  R )
41, 2, 3isdomn 17343 . 2  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )
5 eqid 2438 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
65, 3isnzr 17318 . . . . 5  |-  ( R  e. NzRing 
<->  ( R  e.  Ring  /\  ( 1r `  R
)  =/=  .0.  )
)
76anbi1i 695 . . . 4  |-  ( ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  ( (
x ( .r `  R ) y )  =  .0.  ->  (
x  =  .0.  \/  y  =  .0.  )
) )  <->  ( ( R  e.  Ring  /\  ( 1r `  R )  =/= 
.0.  )  /\  A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )
8 anass 649 . . . 4  |-  ( ( ( R  e.  Ring  /\  ( 1r `  R
)  =/=  .0.  )  /\  A. x  e.  B  A. y  e.  B  ( ( x ( .r `  R ) y )  =  .0. 
->  ( x  =  .0. 
\/  y  =  .0.  ) ) )  <->  ( R  e.  Ring  /\  ( ( 1r `  R )  =/= 
.0.  /\  A. x  e.  B  A. y  e.  B  ( (
x ( .r `  R ) y )  =  .0.  ->  (
x  =  .0.  \/  y  =  .0.  )
) ) ) )
97, 8bitri 249 . . 3  |-  ( ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  ( (
x ( .r `  R ) y )  =  .0.  ->  (
x  =  .0.  \/  y  =  .0.  )
) )  <->  ( R  e.  Ring  /\  ( ( 1r `  R )  =/= 
.0.  /\  A. x  e.  B  A. y  e.  B  ( (
x ( .r `  R ) y )  =  .0.  ->  (
x  =  .0.  \/  y  =  .0.  )
) ) ) )
101, 5rngidcl 16653 . . . . . . 7  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  B )
11 eldifsn 3995 . . . . . . . 8  |-  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  <->  ( ( 1r `  R )  e.  B  /\  ( 1r
`  R )  =/= 
.0.  ) )
1211baibr 897 . . . . . . 7  |-  ( ( 1r `  R )  e.  B  ->  (
( 1r `  R
)  =/=  .0.  <->  ( 1r `  R )  e.  ( B  \  {  .0.  } ) ) )
1310, 12syl 16 . . . . . 6  |-  ( R  e.  Ring  ->  ( ( 1r `  R )  =/=  .0.  <->  ( 1r `  R )  e.  ( B  \  {  .0.  } ) ) )
141, 2rngcl 16646 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( .r `  R ) y )  e.  B )
15143expb 1188 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( .r `  R
) y )  e.  B )
1615biantrurd 508 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
x ( .r `  R ) y )  =/=  .0.  <->  ( (
x ( .r `  R ) y )  e.  B  /\  (
x ( .r `  R ) y )  =/=  .0.  ) ) )
17 eldifsn 3995 . . . . . . . . . 10  |-  ( ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } )  <->  ( (
x ( .r `  R ) y )  e.  B  /\  (
x ( .r `  R ) y )  =/=  .0.  ) )
1816, 17syl6bbr 263 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
x ( .r `  R ) y )  =/=  .0.  <->  ( x
( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) )
1918imbi2d 316 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  =/=  .0.  )  <->  ( ( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) ) ) )
20192ralbidva 2750 . . . . . . 7  |-  ( R  e.  Ring  ->  ( A. x  e.  B  A. y  e.  B  (
( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  =/=  .0.  )  <->  A. x  e.  B  A. y  e.  B  (
( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) ) ) )
21 con34b 292 . . . . . . . . 9  |-  ( ( ( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
)  <->  ( -.  (
x  =  .0.  \/  y  =  .0.  )  ->  -.  ( x ( .r `  R ) y )  =  .0.  ) )
22 neanior 2692 . . . . . . . . . 10  |-  ( ( x  =/=  .0.  /\  y  =/=  .0.  )  <->  -.  (
x  =  .0.  \/  y  =  .0.  )
)
23 df-ne 2603 . . . . . . . . . 10  |-  ( ( x ( .r `  R ) y )  =/=  .0.  <->  -.  (
x ( .r `  R ) y )  =  .0.  )
2422, 23imbi12i 326 . . . . . . . . 9  |-  ( ( ( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  =/=  .0.  )  <->  ( -.  ( x  =  .0.  \/  y  =  .0.  )  ->  -.  ( x ( .r
`  R ) y )  =  .0.  )
)
2521, 24bitr4i 252 . . . . . . . 8  |-  ( ( ( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
)  <->  ( ( x  =/=  .0.  /\  y  =/=  .0.  )  ->  (
x ( .r `  R ) y )  =/=  .0.  ) )
26252ralbii 2736 . . . . . . 7  |-  ( A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
)  <->  A. x  e.  B  A. y  e.  B  ( ( x  =/= 
.0.  /\  y  =/=  .0.  )  ->  ( x ( .r `  R
) y )  =/= 
.0.  ) )
27 impexp 446 . . . . . . . . . 10  |-  ( ( ( ( x  e.  B  /\  y  e.  B )  /\  (
x  =/=  .0.  /\  y  =/=  .0.  ) )  ->  ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) )  <->  ( (
x  e.  B  /\  y  e.  B )  ->  ( ( x  =/= 
.0.  /\  y  =/=  .0.  )  ->  ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) ) )
28 an4 820 . . . . . . . . . . . 12  |-  ( ( ( x  e.  B  /\  y  e.  B
)  /\  ( x  =/=  .0.  /\  y  =/= 
.0.  ) )  <->  ( (
x  e.  B  /\  x  =/=  .0.  )  /\  ( y  e.  B  /\  y  =/=  .0.  ) ) )
29 eldifsn 3995 . . . . . . . . . . . . 13  |-  ( x  e.  ( B  \  {  .0.  } )  <->  ( x  e.  B  /\  x  =/=  .0.  ) )
30 eldifsn 3995 . . . . . . . . . . . . 13  |-  ( y  e.  ( B  \  {  .0.  } )  <->  ( y  e.  B  /\  y  =/=  .0.  ) )
3129, 30anbi12i 697 . . . . . . . . . . . 12  |-  ( ( x  e.  ( B 
\  {  .0.  }
)  /\  y  e.  ( B  \  {  .0.  } ) )  <->  ( (
x  e.  B  /\  x  =/=  .0.  )  /\  ( y  e.  B  /\  y  =/=  .0.  ) ) )
3228, 31bitr4i 252 . . . . . . . . . . 11  |-  ( ( ( x  e.  B  /\  y  e.  B
)  /\  ( x  =/=  .0.  /\  y  =/= 
.0.  ) )  <->  ( x  e.  ( B  \  {  .0.  } )  /\  y  e.  ( B  \  {  .0.  } ) ) )
3332imbi1i 325 . . . . . . . . . 10  |-  ( ( ( ( x  e.  B  /\  y  e.  B )  /\  (
x  =/=  .0.  /\  y  =/=  .0.  ) )  ->  ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) )  <->  ( (
x  e.  ( B 
\  {  .0.  }
)  /\  y  e.  ( B  \  {  .0.  } ) )  ->  (
x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) ) )
3427, 33bitr3i 251 . . . . . . . . 9  |-  ( ( ( x  e.  B  /\  y  e.  B
)  ->  ( (
x  =/=  .0.  /\  y  =/=  .0.  )  -> 
( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) ) )  <->  ( (
x  e.  ( B 
\  {  .0.  }
)  /\  y  e.  ( B  \  {  .0.  } ) )  ->  (
x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) ) )
35342albii 1611 . . . . . . . 8  |-  ( A. x A. y ( ( x  e.  B  /\  y  e.  B )  ->  ( ( x  =/= 
.0.  /\  y  =/=  .0.  )  ->  ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) )  <->  A. x A. y ( ( x  e.  ( B  \  {  .0.  } )  /\  y  e.  ( B  \  {  .0.  } ) )  -> 
( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) ) )
36 r2al 2747 . . . . . . . 8  |-  ( A. x  e.  B  A. y  e.  B  (
( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) )  <->  A. x A. y ( ( x  e.  B  /\  y  e.  B )  ->  (
( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) ) ) )
37 r2al 2747 . . . . . . . 8  |-  ( A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } )  <->  A. x A. y
( ( x  e.  ( B  \  {  .0.  } )  /\  y  e.  ( B  \  {  .0.  } ) )  -> 
( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) ) )
3835, 36, 373bitr4ri 278 . . . . . . 7  |-  ( A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } )  <->  A. x  e.  B  A. y  e.  B  ( ( x  =/= 
.0.  /\  y  =/=  .0.  )  ->  ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) )
3920, 26, 383bitr4g 288 . . . . . 6  |-  ( R  e.  Ring  ->  ( A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
)  <->  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) )
4013, 39anbi12d 710 . . . . 5  |-  ( R  e.  Ring  ->  ( ( ( 1r `  R
)  =/=  .0.  /\  A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) )  <->  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) ) ) )
41 isdomn3.u . . . . . . 7  |-  U  =  (mulGrp `  R )
4241rngmgp 16639 . . . . . 6  |-  ( R  e.  Ring  ->  U  e. 
Mnd )
4341, 1mgpbas 16585 . . . . . . . . 9  |-  B  =  ( Base `  U
)
4441, 5rngidval 16593 . . . . . . . . 9  |-  ( 1r
`  R )  =  ( 0g `  U
)
4541, 2mgpplusg 16583 . . . . . . . . 9  |-  ( .r
`  R )  =  ( +g  `  U
)
4643, 44, 45issubm 15466 . . . . . . . 8  |-  ( U  e.  Mnd  ->  (
( B  \  {  .0.  } )  e.  (SubMnd `  U )  <->  ( ( B  \  {  .0.  }
)  C_  B  /\  ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B 
\  {  .0.  }
) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) ) )
47 3anass 969 . . . . . . . 8  |-  ( ( ( B  \  {  .0.  } )  C_  B  /\  ( 1r `  R
)  e.  ( B 
\  {  .0.  }
)  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) )  <->  ( ( B  \  {  .0.  }
)  C_  B  /\  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) ) )
4846, 47syl6bb 261 . . . . . . 7  |-  ( U  e.  Mnd  ->  (
( B  \  {  .0.  } )  e.  (SubMnd `  U )  <->  ( ( B  \  {  .0.  }
)  C_  B  /\  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) ) ) )
49 difss 3478 . . . . . . . 8  |-  ( B 
\  {  .0.  }
)  C_  B
5049biantrur 506 . . . . . . 7  |-  ( ( ( 1r `  R
)  e.  ( B 
\  {  .0.  }
)  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) )  <->  ( ( B  \  {  .0.  }
)  C_  B  /\  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) ) )
5148, 50syl6bbr 263 . . . . . 6  |-  ( U  e.  Mnd  ->  (
( B  \  {  .0.  } )  e.  (SubMnd `  U )  <->  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) ) ) )
5242, 51syl 16 . . . . 5  |-  ( R  e.  Ring  ->  ( ( B  \  {  .0.  } )  e.  (SubMnd `  U )  <->  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) ) ) )
5340, 52bitr4d 256 . . . 4  |-  ( R  e.  Ring  ->  ( ( ( 1r `  R
)  =/=  .0.  /\  A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) )  <->  ( B  \  {  .0.  } )  e.  (SubMnd `  U
) ) )
5453pm5.32i 637 . . 3  |-  ( ( R  e.  Ring  /\  (
( 1r `  R
)  =/=  .0.  /\  A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )  <->  ( R  e.  Ring  /\  ( B  \  {  .0.  } )  e.  (SubMnd `  U
) ) )
559, 54bitri 249 . 2  |-  ( ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  ( (
x ( .r `  R ) y )  =  .0.  ->  (
x  =  .0.  \/  y  =  .0.  )
) )  <->  ( R  e.  Ring  /\  ( B  \  {  .0.  } )  e.  (SubMnd `  U
) ) )
564, 55bitri 249 1  |-  ( R  e. Domn 
<->  ( R  e.  Ring  /\  ( B  \  {  .0.  } )  e.  (SubMnd `  U ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965   A.wal 1367    = wceq 1369    e. wcel 1756    =/= wne 2601   A.wral 2710    \ cdif 3320    C_ wss 3323   {csn 3872   ` cfv 5413  (class class class)co 6086   Basecbs 14166   .rcmulr 14231   0gc0g 14370   Mndcmnd 15401  SubMndcsubmnd 15455  mulGrpcmgp 16579   1rcur 16591   Ringcrg 16633  NzRingcnzr 17316  Domncdomn 17328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-recs 6824  df-rdg 6858  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-2 10372  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-plusg 14243  df-0g 14372  df-mnd 15407  df-submnd 15457  df-mgp 16580  df-ur 16592  df-rng 16635  df-nzr 17317  df-domn 17332
This theorem is referenced by:  deg1mhm  29528
  Copyright terms: Public domain W3C validator