Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdomn3 Structured version   Unicode version

Theorem isdomn3 29721
Description: Nonzero elements form a multiplicative submonoid of any domain. (Contributed by Stefan O'Rear, 11-Sep-2015.)
Hypotheses
Ref Expression
isdomn3.b  |-  B  =  ( Base `  R
)
isdomn3.z  |-  .0.  =  ( 0g `  R )
isdomn3.u  |-  U  =  (mulGrp `  R )
Assertion
Ref Expression
isdomn3  |-  ( R  e. Domn 
<->  ( R  e.  Ring  /\  ( B  \  {  .0.  } )  e.  (SubMnd `  U ) ) )

Proof of Theorem isdomn3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdomn3.b . . 3  |-  B  =  ( Base `  R
)
2 eqid 2454 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
3 isdomn3.z . . 3  |-  .0.  =  ( 0g `  R )
41, 2, 3isdomn 17490 . 2  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )
5 eqid 2454 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
65, 3isnzr 17465 . . . . 5  |-  ( R  e. NzRing 
<->  ( R  e.  Ring  /\  ( 1r `  R
)  =/=  .0.  )
)
76anbi1i 695 . . . 4  |-  ( ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  ( (
x ( .r `  R ) y )  =  .0.  ->  (
x  =  .0.  \/  y  =  .0.  )
) )  <->  ( ( R  e.  Ring  /\  ( 1r `  R )  =/= 
.0.  )  /\  A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )
8 anass 649 . . . 4  |-  ( ( ( R  e.  Ring  /\  ( 1r `  R
)  =/=  .0.  )  /\  A. x  e.  B  A. y  e.  B  ( ( x ( .r `  R ) y )  =  .0. 
->  ( x  =  .0. 
\/  y  =  .0.  ) ) )  <->  ( R  e.  Ring  /\  ( ( 1r `  R )  =/= 
.0.  /\  A. x  e.  B  A. y  e.  B  ( (
x ( .r `  R ) y )  =  .0.  ->  (
x  =  .0.  \/  y  =  .0.  )
) ) ) )
97, 8bitri 249 . . 3  |-  ( ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  ( (
x ( .r `  R ) y )  =  .0.  ->  (
x  =  .0.  \/  y  =  .0.  )
) )  <->  ( R  e.  Ring  /\  ( ( 1r `  R )  =/= 
.0.  /\  A. x  e.  B  A. y  e.  B  ( (
x ( .r `  R ) y )  =  .0.  ->  (
x  =  .0.  \/  y  =  .0.  )
) ) ) )
101, 5rngidcl 16789 . . . . . . 7  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  B )
11 eldifsn 4109 . . . . . . . 8  |-  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  <->  ( ( 1r `  R )  e.  B  /\  ( 1r
`  R )  =/= 
.0.  ) )
1211baibr 897 . . . . . . 7  |-  ( ( 1r `  R )  e.  B  ->  (
( 1r `  R
)  =/=  .0.  <->  ( 1r `  R )  e.  ( B  \  {  .0.  } ) ) )
1310, 12syl 16 . . . . . 6  |-  ( R  e.  Ring  ->  ( ( 1r `  R )  =/=  .0.  <->  ( 1r `  R )  e.  ( B  \  {  .0.  } ) ) )
141, 2rngcl 16782 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( .r `  R ) y )  e.  B )
15143expb 1189 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( .r `  R
) y )  e.  B )
1615biantrurd 508 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
x ( .r `  R ) y )  =/=  .0.  <->  ( (
x ( .r `  R ) y )  e.  B  /\  (
x ( .r `  R ) y )  =/=  .0.  ) ) )
17 eldifsn 4109 . . . . . . . . . 10  |-  ( ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } )  <->  ( (
x ( .r `  R ) y )  e.  B  /\  (
x ( .r `  R ) y )  =/=  .0.  ) )
1816, 17syl6bbr 263 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
x ( .r `  R ) y )  =/=  .0.  <->  ( x
( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) )
1918imbi2d 316 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  =/=  .0.  )  <->  ( ( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) ) ) )
20192ralbidva 2850 . . . . . . 7  |-  ( R  e.  Ring  ->  ( A. x  e.  B  A. y  e.  B  (
( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  =/=  .0.  )  <->  A. x  e.  B  A. y  e.  B  (
( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) ) ) )
21 con34b 292 . . . . . . . . 9  |-  ( ( ( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
)  <->  ( -.  (
x  =  .0.  \/  y  =  .0.  )  ->  -.  ( x ( .r `  R ) y )  =  .0.  ) )
22 neanior 2777 . . . . . . . . . 10  |-  ( ( x  =/=  .0.  /\  y  =/=  .0.  )  <->  -.  (
x  =  .0.  \/  y  =  .0.  )
)
23 df-ne 2650 . . . . . . . . . 10  |-  ( ( x ( .r `  R ) y )  =/=  .0.  <->  -.  (
x ( .r `  R ) y )  =  .0.  )
2422, 23imbi12i 326 . . . . . . . . 9  |-  ( ( ( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  =/=  .0.  )  <->  ( -.  ( x  =  .0.  \/  y  =  .0.  )  ->  -.  ( x ( .r
`  R ) y )  =  .0.  )
)
2521, 24bitr4i 252 . . . . . . . 8  |-  ( ( ( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
)  <->  ( ( x  =/=  .0.  /\  y  =/=  .0.  )  ->  (
x ( .r `  R ) y )  =/=  .0.  ) )
26252ralbii 2840 . . . . . . 7  |-  ( A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
)  <->  A. x  e.  B  A. y  e.  B  ( ( x  =/= 
.0.  /\  y  =/=  .0.  )  ->  ( x ( .r `  R
) y )  =/= 
.0.  ) )
27 impexp 446 . . . . . . . . . 10  |-  ( ( ( ( x  e.  B  /\  y  e.  B )  /\  (
x  =/=  .0.  /\  y  =/=  .0.  ) )  ->  ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) )  <->  ( (
x  e.  B  /\  y  e.  B )  ->  ( ( x  =/= 
.0.  /\  y  =/=  .0.  )  ->  ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) ) )
28 an4 820 . . . . . . . . . . . 12  |-  ( ( ( x  e.  B  /\  y  e.  B
)  /\  ( x  =/=  .0.  /\  y  =/= 
.0.  ) )  <->  ( (
x  e.  B  /\  x  =/=  .0.  )  /\  ( y  e.  B  /\  y  =/=  .0.  ) ) )
29 eldifsn 4109 . . . . . . . . . . . . 13  |-  ( x  e.  ( B  \  {  .0.  } )  <->  ( x  e.  B  /\  x  =/=  .0.  ) )
30 eldifsn 4109 . . . . . . . . . . . . 13  |-  ( y  e.  ( B  \  {  .0.  } )  <->  ( y  e.  B  /\  y  =/=  .0.  ) )
3129, 30anbi12i 697 . . . . . . . . . . . 12  |-  ( ( x  e.  ( B 
\  {  .0.  }
)  /\  y  e.  ( B  \  {  .0.  } ) )  <->  ( (
x  e.  B  /\  x  =/=  .0.  )  /\  ( y  e.  B  /\  y  =/=  .0.  ) ) )
3228, 31bitr4i 252 . . . . . . . . . . 11  |-  ( ( ( x  e.  B  /\  y  e.  B
)  /\  ( x  =/=  .0.  /\  y  =/= 
.0.  ) )  <->  ( x  e.  ( B  \  {  .0.  } )  /\  y  e.  ( B  \  {  .0.  } ) ) )
3332imbi1i 325 . . . . . . . . . 10  |-  ( ( ( ( x  e.  B  /\  y  e.  B )  /\  (
x  =/=  .0.  /\  y  =/=  .0.  ) )  ->  ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) )  <->  ( (
x  e.  ( B 
\  {  .0.  }
)  /\  y  e.  ( B  \  {  .0.  } ) )  ->  (
x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) ) )
3427, 33bitr3i 251 . . . . . . . . 9  |-  ( ( ( x  e.  B  /\  y  e.  B
)  ->  ( (
x  =/=  .0.  /\  y  =/=  .0.  )  -> 
( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) ) )  <->  ( (
x  e.  ( B 
\  {  .0.  }
)  /\  y  e.  ( B  \  {  .0.  } ) )  ->  (
x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) ) )
35342albii 1612 . . . . . . . 8  |-  ( A. x A. y ( ( x  e.  B  /\  y  e.  B )  ->  ( ( x  =/= 
.0.  /\  y  =/=  .0.  )  ->  ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) )  <->  A. x A. y ( ( x  e.  ( B  \  {  .0.  } )  /\  y  e.  ( B  \  {  .0.  } ) )  -> 
( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) ) )
36 r2al 2877 . . . . . . . 8  |-  ( A. x  e.  B  A. y  e.  B  (
( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) )  <->  A. x A. y ( ( x  e.  B  /\  y  e.  B )  ->  (
( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) ) ) )
37 r2al 2877 . . . . . . . 8  |-  ( A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } )  <->  A. x A. y
( ( x  e.  ( B  \  {  .0.  } )  /\  y  e.  ( B  \  {  .0.  } ) )  -> 
( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) ) )
3835, 36, 373bitr4ri 278 . . . . . . 7  |-  ( A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } )  <->  A. x  e.  B  A. y  e.  B  ( ( x  =/= 
.0.  /\  y  =/=  .0.  )  ->  ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) )
3920, 26, 383bitr4g 288 . . . . . 6  |-  ( R  e.  Ring  ->  ( A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
)  <->  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) )
4013, 39anbi12d 710 . . . . 5  |-  ( R  e.  Ring  ->  ( ( ( 1r `  R
)  =/=  .0.  /\  A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) )  <->  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) ) ) )
41 isdomn3.u . . . . . . 7  |-  U  =  (mulGrp `  R )
4241rngmgp 16775 . . . . . 6  |-  ( R  e.  Ring  ->  U  e. 
Mnd )
4341, 1mgpbas 16720 . . . . . . . . 9  |-  B  =  ( Base `  U
)
4441, 5rngidval 16728 . . . . . . . . 9  |-  ( 1r
`  R )  =  ( 0g `  U
)
4541, 2mgpplusg 16718 . . . . . . . . 9  |-  ( .r
`  R )  =  ( +g  `  U
)
4643, 44, 45issubm 15595 . . . . . . . 8  |-  ( U  e.  Mnd  ->  (
( B  \  {  .0.  } )  e.  (SubMnd `  U )  <->  ( ( B  \  {  .0.  }
)  C_  B  /\  ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B 
\  {  .0.  }
) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) ) )
47 3anass 969 . . . . . . . 8  |-  ( ( ( B  \  {  .0.  } )  C_  B  /\  ( 1r `  R
)  e.  ( B 
\  {  .0.  }
)  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) )  <->  ( ( B  \  {  .0.  }
)  C_  B  /\  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) ) )
4846, 47syl6bb 261 . . . . . . 7  |-  ( U  e.  Mnd  ->  (
( B  \  {  .0.  } )  e.  (SubMnd `  U )  <->  ( ( B  \  {  .0.  }
)  C_  B  /\  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) ) ) )
49 difss 3592 . . . . . . . 8  |-  ( B 
\  {  .0.  }
)  C_  B
5049biantrur 506 . . . . . . 7  |-  ( ( ( 1r `  R
)  e.  ( B 
\  {  .0.  }
)  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) )  <->  ( ( B  \  {  .0.  }
)  C_  B  /\  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) ) )
5148, 50syl6bbr 263 . . . . . 6  |-  ( U  e.  Mnd  ->  (
( B  \  {  .0.  } )  e.  (SubMnd `  U )  <->  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) ) ) )
5242, 51syl 16 . . . . 5  |-  ( R  e.  Ring  ->  ( ( B  \  {  .0.  } )  e.  (SubMnd `  U )  <->  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) ) ) )
5340, 52bitr4d 256 . . . 4  |-  ( R  e.  Ring  ->  ( ( ( 1r `  R
)  =/=  .0.  /\  A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) )  <->  ( B  \  {  .0.  } )  e.  (SubMnd `  U
) ) )
5453pm5.32i 637 . . 3  |-  ( ( R  e.  Ring  /\  (
( 1r `  R
)  =/=  .0.  /\  A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )  <->  ( R  e.  Ring  /\  ( B  \  {  .0.  } )  e.  (SubMnd `  U
) ) )
559, 54bitri 249 . 2  |-  ( ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  ( (
x ( .r `  R ) y )  =  .0.  ->  (
x  =  .0.  \/  y  =  .0.  )
) )  <->  ( R  e.  Ring  /\  ( B  \  {  .0.  } )  e.  (SubMnd `  U
) ) )
564, 55bitri 249 1  |-  ( R  e. Domn 
<->  ( R  e.  Ring  /\  ( B  \  {  .0.  } )  e.  (SubMnd `  U ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965   A.wal 1368    = wceq 1370    e. wcel 1758    =/= wne 2648   A.wral 2799    \ cdif 3434    C_ wss 3437   {csn 3986   ` cfv 5527  (class class class)co 6201   Basecbs 14293   .rcmulr 14359   0gc0g 14498   Mndcmnd 15529  SubMndcsubmnd 15583  mulGrpcmgp 16714   1rcur 16726   Ringcrg 16769  NzRingcnzr 17463  Domncdomn 17475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-cnex 9450  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470  ax-pre-mulgt0 9471
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-recs 6943  df-rdg 6977  df-er 7212  df-en 7422  df-dom 7423  df-sdom 7424  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710  df-nn 10435  df-2 10492  df-ndx 14296  df-slot 14297  df-base 14298  df-sets 14299  df-plusg 14371  df-0g 14500  df-mnd 15535  df-submnd 15585  df-mgp 16715  df-ur 16727  df-rng 16771  df-nzr 17464  df-domn 17479
This theorem is referenced by:  deg1mhm  29724
  Copyright terms: Public domain W3C validator