Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdomn3 Structured version   Unicode version

Theorem isdomn3 35994
Description: Nonzero elements form a multiplicative submonoid of any domain. (Contributed by Stefan O'Rear, 11-Sep-2015.)
Hypotheses
Ref Expression
isdomn3.b  |-  B  =  ( Base `  R
)
isdomn3.z  |-  .0.  =  ( 0g `  R )
isdomn3.u  |-  U  =  (mulGrp `  R )
Assertion
Ref Expression
isdomn3  |-  ( R  e. Domn 
<->  ( R  e.  Ring  /\  ( B  \  {  .0.  } )  e.  (SubMnd `  U ) ) )

Proof of Theorem isdomn3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdomn3.b . . 3  |-  B  =  ( Base `  R
)
2 eqid 2428 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
3 isdomn3.z . . 3  |-  .0.  =  ( 0g `  R )
41, 2, 3isdomn 18461 . 2  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )
5 eqid 2428 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
65, 3isnzr 18426 . . . . 5  |-  ( R  e. NzRing 
<->  ( R  e.  Ring  /\  ( 1r `  R
)  =/=  .0.  )
)
76anbi1i 699 . . . 4  |-  ( ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  ( (
x ( .r `  R ) y )  =  .0.  ->  (
x  =  .0.  \/  y  =  .0.  )
) )  <->  ( ( R  e.  Ring  /\  ( 1r `  R )  =/= 
.0.  )  /\  A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )
8 anass 653 . . . 4  |-  ( ( ( R  e.  Ring  /\  ( 1r `  R
)  =/=  .0.  )  /\  A. x  e.  B  A. y  e.  B  ( ( x ( .r `  R ) y )  =  .0. 
->  ( x  =  .0. 
\/  y  =  .0.  ) ) )  <->  ( R  e.  Ring  /\  ( ( 1r `  R )  =/= 
.0.  /\  A. x  e.  B  A. y  e.  B  ( (
x ( .r `  R ) y )  =  .0.  ->  (
x  =  .0.  \/  y  =  .0.  )
) ) ) )
97, 8bitri 252 . . 3  |-  ( ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  ( (
x ( .r `  R ) y )  =  .0.  ->  (
x  =  .0.  \/  y  =  .0.  )
) )  <->  ( R  e.  Ring  /\  ( ( 1r `  R )  =/= 
.0.  /\  A. x  e.  B  A. y  e.  B  ( (
x ( .r `  R ) y )  =  .0.  ->  (
x  =  .0.  \/  y  =  .0.  )
) ) ) )
101, 5ringidcl 17744 . . . . . . 7  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  B )
11 eldifsn 4068 . . . . . . . 8  |-  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  <->  ( ( 1r `  R )  e.  B  /\  ( 1r
`  R )  =/= 
.0.  ) )
1211baibr 912 . . . . . . 7  |-  ( ( 1r `  R )  e.  B  ->  (
( 1r `  R
)  =/=  .0.  <->  ( 1r `  R )  e.  ( B  \  {  .0.  } ) ) )
1310, 12syl 17 . . . . . 6  |-  ( R  e.  Ring  ->  ( ( 1r `  R )  =/=  .0.  <->  ( 1r `  R )  e.  ( B  \  {  .0.  } ) ) )
141, 2ringcl 17737 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( .r `  R ) y )  e.  B )
15143expb 1206 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( .r `  R
) y )  e.  B )
1615biantrurd 510 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
x ( .r `  R ) y )  =/=  .0.  <->  ( (
x ( .r `  R ) y )  e.  B  /\  (
x ( .r `  R ) y )  =/=  .0.  ) ) )
17 eldifsn 4068 . . . . . . . . . 10  |-  ( ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } )  <->  ( (
x ( .r `  R ) y )  e.  B  /\  (
x ( .r `  R ) y )  =/=  .0.  ) )
1816, 17syl6bbr 266 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
x ( .r `  R ) y )  =/=  .0.  <->  ( x
( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) )
1918imbi2d 317 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  =/=  .0.  )  <->  ( ( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) ) ) )
20192ralbidva 2807 . . . . . . 7  |-  ( R  e.  Ring  ->  ( A. x  e.  B  A. y  e.  B  (
( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  =/=  .0.  )  <->  A. x  e.  B  A. y  e.  B  (
( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) ) ) )
21 con34b 293 . . . . . . . . 9  |-  ( ( ( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
)  <->  ( -.  (
x  =  .0.  \/  y  =  .0.  )  ->  -.  ( x ( .r `  R ) y )  =  .0.  ) )
22 neanior 2693 . . . . . . . . . 10  |-  ( ( x  =/=  .0.  /\  y  =/=  .0.  )  <->  -.  (
x  =  .0.  \/  y  =  .0.  )
)
23 df-ne 2601 . . . . . . . . . 10  |-  ( ( x ( .r `  R ) y )  =/=  .0.  <->  -.  (
x ( .r `  R ) y )  =  .0.  )
2422, 23imbi12i 327 . . . . . . . . 9  |-  ( ( ( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  =/=  .0.  )  <->  ( -.  ( x  =  .0.  \/  y  =  .0.  )  ->  -.  ( x ( .r
`  R ) y )  =  .0.  )
)
2521, 24bitr4i 255 . . . . . . . 8  |-  ( ( ( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
)  <->  ( ( x  =/=  .0.  /\  y  =/=  .0.  )  ->  (
x ( .r `  R ) y )  =/=  .0.  ) )
26252ralbii 2797 . . . . . . 7  |-  ( A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
)  <->  A. x  e.  B  A. y  e.  B  ( ( x  =/= 
.0.  /\  y  =/=  .0.  )  ->  ( x ( .r `  R
) y )  =/= 
.0.  ) )
27 impexp 447 . . . . . . . . . 10  |-  ( ( ( ( x  e.  B  /\  y  e.  B )  /\  (
x  =/=  .0.  /\  y  =/=  .0.  ) )  ->  ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) )  <->  ( (
x  e.  B  /\  y  e.  B )  ->  ( ( x  =/= 
.0.  /\  y  =/=  .0.  )  ->  ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) ) )
28 an4 831 . . . . . . . . . . . 12  |-  ( ( ( x  e.  B  /\  y  e.  B
)  /\  ( x  =/=  .0.  /\  y  =/= 
.0.  ) )  <->  ( (
x  e.  B  /\  x  =/=  .0.  )  /\  ( y  e.  B  /\  y  =/=  .0.  ) ) )
29 eldifsn 4068 . . . . . . . . . . . . 13  |-  ( x  e.  ( B  \  {  .0.  } )  <->  ( x  e.  B  /\  x  =/=  .0.  ) )
30 eldifsn 4068 . . . . . . . . . . . . 13  |-  ( y  e.  ( B  \  {  .0.  } )  <->  ( y  e.  B  /\  y  =/=  .0.  ) )
3129, 30anbi12i 701 . . . . . . . . . . . 12  |-  ( ( x  e.  ( B 
\  {  .0.  }
)  /\  y  e.  ( B  \  {  .0.  } ) )  <->  ( (
x  e.  B  /\  x  =/=  .0.  )  /\  ( y  e.  B  /\  y  =/=  .0.  ) ) )
3228, 31bitr4i 255 . . . . . . . . . . 11  |-  ( ( ( x  e.  B  /\  y  e.  B
)  /\  ( x  =/=  .0.  /\  y  =/= 
.0.  ) )  <->  ( x  e.  ( B  \  {  .0.  } )  /\  y  e.  ( B  \  {  .0.  } ) ) )
3332imbi1i 326 . . . . . . . . . 10  |-  ( ( ( ( x  e.  B  /\  y  e.  B )  /\  (
x  =/=  .0.  /\  y  =/=  .0.  ) )  ->  ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) )  <->  ( (
x  e.  ( B 
\  {  .0.  }
)  /\  y  e.  ( B  \  {  .0.  } ) )  ->  (
x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) ) )
3427, 33bitr3i 254 . . . . . . . . 9  |-  ( ( ( x  e.  B  /\  y  e.  B
)  ->  ( (
x  =/=  .0.  /\  y  =/=  .0.  )  -> 
( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) ) )  <->  ( (
x  e.  ( B 
\  {  .0.  }
)  /\  y  e.  ( B  \  {  .0.  } ) )  ->  (
x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) ) )
35342albii 1686 . . . . . . . 8  |-  ( A. x A. y ( ( x  e.  B  /\  y  e.  B )  ->  ( ( x  =/= 
.0.  /\  y  =/=  .0.  )  ->  ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) )  <->  A. x A. y ( ( x  e.  ( B  \  {  .0.  } )  /\  y  e.  ( B  \  {  .0.  } ) )  -> 
( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) ) )
36 r2al 2743 . . . . . . . 8  |-  ( A. x  e.  B  A. y  e.  B  (
( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) )  <->  A. x A. y ( ( x  e.  B  /\  y  e.  B )  ->  (
( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) ) ) )
37 r2al 2743 . . . . . . . 8  |-  ( A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } )  <->  A. x A. y
( ( x  e.  ( B  \  {  .0.  } )  /\  y  e.  ( B  \  {  .0.  } ) )  -> 
( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) ) )
3835, 36, 373bitr4ri 281 . . . . . . 7  |-  ( A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } )  <->  A. x  e.  B  A. y  e.  B  ( ( x  =/= 
.0.  /\  y  =/=  .0.  )  ->  ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) )
3920, 26, 383bitr4g 291 . . . . . 6  |-  ( R  e.  Ring  ->  ( A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
)  <->  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) )
4013, 39anbi12d 715 . . . . 5  |-  ( R  e.  Ring  ->  ( ( ( 1r `  R
)  =/=  .0.  /\  A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) )  <->  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) ) ) )
41 isdomn3.u . . . . . . 7  |-  U  =  (mulGrp `  R )
4241ringmgp 17729 . . . . . 6  |-  ( R  e.  Ring  ->  U  e. 
Mnd )
4341, 1mgpbas 17672 . . . . . . . . 9  |-  B  =  ( Base `  U
)
4441, 5ringidval 17680 . . . . . . . . 9  |-  ( 1r
`  R )  =  ( 0g `  U
)
4541, 2mgpplusg 17670 . . . . . . . . 9  |-  ( .r
`  R )  =  ( +g  `  U
)
4643, 44, 45issubm 16537 . . . . . . . 8  |-  ( U  e.  Mnd  ->  (
( B  \  {  .0.  } )  e.  (SubMnd `  U )  <->  ( ( B  \  {  .0.  }
)  C_  B  /\  ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B 
\  {  .0.  }
) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) ) )
47 3anass 986 . . . . . . . 8  |-  ( ( ( B  \  {  .0.  } )  C_  B  /\  ( 1r `  R
)  e.  ( B 
\  {  .0.  }
)  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) )  <->  ( ( B  \  {  .0.  }
)  C_  B  /\  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) ) )
4846, 47syl6bb 264 . . . . . . 7  |-  ( U  e.  Mnd  ->  (
( B  \  {  .0.  } )  e.  (SubMnd `  U )  <->  ( ( B  \  {  .0.  }
)  C_  B  /\  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) ) ) )
49 difss 3535 . . . . . . . 8  |-  ( B 
\  {  .0.  }
)  C_  B
5049biantrur 508 . . . . . . 7  |-  ( ( ( 1r `  R
)  e.  ( B 
\  {  .0.  }
)  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) )  <->  ( ( B  \  {  .0.  }
)  C_  B  /\  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) ) )
5148, 50syl6bbr 266 . . . . . 6  |-  ( U  e.  Mnd  ->  (
( B  \  {  .0.  } )  e.  (SubMnd `  U )  <->  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) ) ) )
5242, 51syl 17 . . . . 5  |-  ( R  e.  Ring  ->  ( ( B  \  {  .0.  } )  e.  (SubMnd `  U )  <->  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) ) ) )
5340, 52bitr4d 259 . . . 4  |-  ( R  e.  Ring  ->  ( ( ( 1r `  R
)  =/=  .0.  /\  A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) )  <->  ( B  \  {  .0.  } )  e.  (SubMnd `  U
) ) )
5453pm5.32i 641 . . 3  |-  ( ( R  e.  Ring  /\  (
( 1r `  R
)  =/=  .0.  /\  A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )  <->  ( R  e.  Ring  /\  ( B  \  {  .0.  } )  e.  (SubMnd `  U
) ) )
559, 54bitri 252 . 2  |-  ( ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  ( (
x ( .r `  R ) y )  =  .0.  ->  (
x  =  .0.  \/  y  =  .0.  )
) )  <->  ( R  e.  Ring  /\  ( B  \  {  .0.  } )  e.  (SubMnd `  U
) ) )
564, 55bitri 252 1  |-  ( R  e. Domn 
<->  ( R  e.  Ring  /\  ( B  \  {  .0.  } )  e.  (SubMnd `  U ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982   A.wal 1435    = wceq 1437    e. wcel 1872    =/= wne 2599   A.wral 2714    \ cdif 3376    C_ wss 3379   {csn 3941   ` cfv 5544  (class class class)co 6249   Basecbs 15064   .rcmulr 15134   0gc0g 15281   Mndcmnd 16478  SubMndcsubmnd 16524  mulGrpcmgp 17666   1rcur 17678   Ringcrg 17723  NzRingcnzr 18424  Domncdomn 18447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-om 6651  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-er 7318  df-en 7525  df-dom 7526  df-sdom 7527  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9813  df-neg 9814  df-nn 10561  df-2 10619  df-ndx 15067  df-slot 15068  df-base 15069  df-sets 15070  df-plusg 15146  df-0g 15283  df-mgm 16431  df-sgrp 16470  df-mnd 16480  df-submnd 16526  df-mgp 17667  df-ur 17679  df-ring 17725  df-nzr 18425  df-domn 18451
This theorem is referenced by:  deg1mhm  35997
  Copyright terms: Public domain W3C validator