MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip0i Structured version   Visualization version   GIF version

Theorem ip0i 27064
Description: A slight variant of Equation 6.46 of [Ponnusamy] p. 362, where 𝐽 is either 1 or -1 to represent +-1. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ip1i.a 𝐴𝑋
ip1i.b 𝐵𝑋
ip1i.c 𝐶𝑋
ip1i.6 𝑁 = (normCV𝑈)
ip0i.j 𝐽 ∈ ℂ
Assertion
Ref Expression
ip0i ((((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)))

Proof of Theorem ip0i
StepHypRef Expression
1 2cn 10968 . . . 4 2 ∈ ℂ
2 ip1i.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
3 ip1i.6 . . . . . . 7 𝑁 = (normCV𝑈)
4 ip1i.9 . . . . . . . 8 𝑈 ∈ CPreHilOLD
54phnvi 27055 . . . . . . 7 𝑈 ∈ NrmCVec
6 ip1i.a . . . . . . . 8 𝐴𝑋
7 ip0i.j . . . . . . . . 9 𝐽 ∈ ℂ
8 ip1i.c . . . . . . . . 9 𝐶𝑋
9 ip1i.4 . . . . . . . . . 10 𝑆 = ( ·𝑠OLD𝑈)
102, 9nvscl 26865 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐽 ∈ ℂ ∧ 𝐶𝑋) → (𝐽𝑆𝐶) ∈ 𝑋)
115, 7, 8, 10mp3an 1416 . . . . . . . 8 (𝐽𝑆𝐶) ∈ 𝑋
12 ip1i.2 . . . . . . . . 9 𝐺 = ( +𝑣𝑈)
132, 12nvgcl 26859 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋) → (𝐴𝐺(𝐽𝑆𝐶)) ∈ 𝑋)
145, 6, 11, 13mp3an 1416 . . . . . . 7 (𝐴𝐺(𝐽𝑆𝐶)) ∈ 𝑋
152, 3, 5, 14nvcli 26901 . . . . . 6 (𝑁‘(𝐴𝐺(𝐽𝑆𝐶))) ∈ ℝ
1615recni 9931 . . . . 5 (𝑁‘(𝐴𝐺(𝐽𝑆𝐶))) ∈ ℂ
1716sqcli 12806 . . . 4 ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) ∈ ℂ
187negcli 10228 . . . . . . . . 9 -𝐽 ∈ ℂ
192, 9nvscl 26865 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ -𝐽 ∈ ℂ ∧ 𝐶𝑋) → (-𝐽𝑆𝐶) ∈ 𝑋)
205, 18, 8, 19mp3an 1416 . . . . . . . 8 (-𝐽𝑆𝐶) ∈ 𝑋
212, 12nvgcl 26859 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋) → (𝐴𝐺(-𝐽𝑆𝐶)) ∈ 𝑋)
225, 6, 20, 21mp3an 1416 . . . . . . 7 (𝐴𝐺(-𝐽𝑆𝐶)) ∈ 𝑋
232, 3, 5, 22nvcli 26901 . . . . . 6 (𝑁‘(𝐴𝐺(-𝐽𝑆𝐶))) ∈ ℝ
2423recni 9931 . . . . 5 (𝑁‘(𝐴𝐺(-𝐽𝑆𝐶))) ∈ ℂ
2524sqcli 12806 . . . 4 ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2) ∈ ℂ
261, 17, 25subdii 10358 . . 3 (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2))) = ((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) − (2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)))
271, 17mulcli 9924 . . . 4 (2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) ∈ ℂ
281, 25mulcli 9924 . . . 4 (2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) ∈ ℂ
29 ip1i.b . . . . . . . 8 𝐵𝑋
302, 3, 5, 29nvcli 26901 . . . . . . 7 (𝑁𝐵) ∈ ℝ
3130recni 9931 . . . . . 6 (𝑁𝐵) ∈ ℂ
3231sqcli 12806 . . . . 5 ((𝑁𝐵)↑2) ∈ ℂ
331, 32mulcli 9924 . . . 4 (2 · ((𝑁𝐵)↑2)) ∈ ℂ
34 pnpcan2 10200 . . . 4 (((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) ∈ ℂ ∧ (2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) ∈ ℂ ∧ (2 · ((𝑁𝐵)↑2)) ∈ ℂ) → (((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2))) − ((2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2)))) = ((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) − (2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2))))
3527, 28, 33, 34mp3an 1416 . . 3 (((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2))) − ((2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2)))) = ((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) − (2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)))
3626, 35eqtr4i 2635 . 2 (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2))) = (((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2))) − ((2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2))))
37 eqid 2610 . . . . . . . . . 10 (1st𝑈) = (1st𝑈)
3837nvvc 26854 . . . . . . . . 9 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3912vafval 26842 . . . . . . . . . 10 𝐺 = (1st ‘(1st𝑈))
4039vcablo 26808 . . . . . . . . 9 ((1st𝑈) ∈ CVecOLD𝐺 ∈ AbelOp)
415, 38, 40mp2b 10 . . . . . . . 8 𝐺 ∈ AbelOp
426, 29, 113pm3.2i 1232 . . . . . . . 8 (𝐴𝑋𝐵𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋)
432, 12bafval 26843 . . . . . . . . 9 𝑋 = ran 𝐺
4443ablo32 26787 . . . . . . . 8 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)) = ((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵))
4541, 42, 44mp2an 704 . . . . . . 7 ((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)) = ((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵)
4645fveq2i 6106 . . . . . 6 (𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶))) = (𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵))
4746oveq1i 6559 . . . . 5 ((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) = ((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵))↑2)
48 neg1cn 11001 . . . . . . . . . 10 -1 ∈ ℂ
492, 9nvscl 26865 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
505, 48, 29, 49mp3an 1416 . . . . . . . . 9 (-1𝑆𝐵) ∈ 𝑋
516, 50, 113pm3.2i 1232 . . . . . . . 8 (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋)
5243ablo32 26787 . . . . . . . 8 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋)) → ((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)) = ((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))
5341, 51, 52mp2an 704 . . . . . . 7 ((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)) = ((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵))
5453fveq2i 6106 . . . . . 6 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶))) = (𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))
5554oveq1i 6559 . . . . 5 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2) = ((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2)
5647, 55oveq12i 6561 . . . 4 (((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2)) = (((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵))↑2) + ((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2))
572, 12, 9, 3phpar 27063 . . . . 5 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝐺(𝐽𝑆𝐶)) ∈ 𝑋𝐵𝑋) → (((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵))↑2) + ((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁𝐵)↑2))))
584, 14, 29, 57mp3an 1416 . . . 4 (((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵))↑2) + ((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁𝐵)↑2)))
591, 17, 32adddii 9929 . . . 4 (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁𝐵)↑2))) = ((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2)))
6056, 58, 593eqtri 2636 . . 3 (((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2)) = ((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2)))
616, 29, 203pm3.2i 1232 . . . . . . . 8 (𝐴𝑋𝐵𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋)
6243ablo32 26787 . . . . . . . 8 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)) = ((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵))
6341, 61, 62mp2an 704 . . . . . . 7 ((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)) = ((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵)
6463fveq2i 6106 . . . . . 6 (𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶))) = (𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵))
6564oveq1i 6559 . . . . 5 ((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2) = ((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵))↑2)
666, 50, 203pm3.2i 1232 . . . . . . . 8 (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋)
6743ablo32 26787 . . . . . . . 8 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋)) → ((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)) = ((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))
6841, 66, 67mp2an 704 . . . . . . 7 ((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)) = ((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵))
6968fveq2i 6106 . . . . . 6 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶))) = (𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))
7069oveq1i 6559 . . . . 5 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2) = ((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2)
7165, 70oveq12i 6561 . . . 4 (((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2)) = (((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵))↑2) + ((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2))
722, 12, 9, 3phpar 27063 . . . . 5 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝐺(-𝐽𝑆𝐶)) ∈ 𝑋𝐵𝑋) → (((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵))↑2) + ((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁𝐵)↑2))))
734, 22, 29, 72mp3an 1416 . . . 4 (((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵))↑2) + ((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁𝐵)↑2)))
741, 25, 32adddii 9929 . . . 4 (2 · (((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁𝐵)↑2))) = ((2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2)))
7571, 73, 743eqtri 2636 . . 3 (((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2)) = ((2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2)))
7660, 75oveq12i 6561 . 2 ((((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2)) − (((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2))) = (((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2))) − ((2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2))))
772, 12nvgcl 26859 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
785, 6, 29, 77mp3an 1416 . . . . . . 7 (𝐴𝐺𝐵) ∈ 𝑋
792, 12nvgcl 26859 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)) ∈ 𝑋)
805, 78, 11, 79mp3an 1416 . . . . . 6 ((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)) ∈ 𝑋
812, 3, 5, 80nvcli 26901 . . . . 5 (𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶))) ∈ ℝ
8281recni 9931 . . . 4 (𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶))) ∈ ℂ
8382sqcli 12806 . . 3 ((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) ∈ ℂ
842, 12nvgcl 26859 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
855, 6, 50, 84mp3an 1416 . . . . . . 7 (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋
862, 12nvgcl 26859 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)) ∈ 𝑋)
875, 85, 11, 86mp3an 1416 . . . . . 6 ((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)) ∈ 𝑋
882, 3, 5, 87nvcli 26901 . . . . 5 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶))) ∈ ℝ
8988recni 9931 . . . 4 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶))) ∈ ℂ
9089sqcli 12806 . . 3 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2) ∈ ℂ
912, 12nvgcl 26859 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)) ∈ 𝑋)
925, 78, 20, 91mp3an 1416 . . . . . 6 ((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)) ∈ 𝑋
932, 3, 5, 92nvcli 26901 . . . . 5 (𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶))) ∈ ℝ
9493recni 9931 . . . 4 (𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶))) ∈ ℂ
9594sqcli 12806 . . 3 ((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2) ∈ ℂ
962, 12nvgcl 26859 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)) ∈ 𝑋)
975, 85, 20, 96mp3an 1416 . . . . . 6 ((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)) ∈ 𝑋
982, 3, 5, 97nvcli 26901 . . . . 5 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶))) ∈ ℝ
9998recni 9931 . . . 4 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶))) ∈ ℂ
10099sqcli 12806 . . 3 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2) ∈ ℂ
10183, 90, 95, 100addsub4i 10256 . 2 ((((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2)) − (((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2))) = ((((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2)))
10236, 76, 1013eqtr2ri 2639 1 ((((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)))
Colors of variables: wff setvar class
Syntax hints:  w3a 1031   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  1st c1st 7057  cc 9813  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145  -cneg 10146  2c2 10947  cexp 12722  AbelOpcablo 26782  CVecOLDcvc 26797  NrmCVeccnv 26823   +𝑣 cpv 26824  BaseSetcba 26825   ·𝑠OLD cns 26826  normCVcnmcv 26829  ·𝑖OLDcdip 26939  CPreHilOLDccphlo 27051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-seq 12664  df-exp 12723  df-grpo 26731  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-nmcv 26839  df-ph 27052
This theorem is referenced by:  ip1ilem  27065
  Copyright terms: Public domain W3C validator