Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvvc | Structured version Visualization version GIF version |
Description: The vector space component of a normed complex vector space. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvvc.1 | ⊢ 𝑊 = (1st ‘𝑈) |
Ref | Expression |
---|---|
nvvc | ⊢ (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvvc.1 | . . 3 ⊢ 𝑊 = (1st ‘𝑈) | |
2 | eqid 2610 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
3 | eqid 2610 | . . 3 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
4 | 1, 2, 3 | nvvop 26848 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑊 = 〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉) |
5 | eqid 2610 | . . . 4 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
6 | eqid 2610 | . . . 4 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
7 | eqid 2610 | . . . 4 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
8 | 5, 2, 3, 6, 7 | nvi 26853 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉 ∈ CVecOLD ∧ (normCV‘𝑈):(BaseSet‘𝑈)⟶ℝ ∧ ∀𝑥 ∈ (BaseSet‘𝑈)((((normCV‘𝑈)‘𝑥) = 0 → 𝑥 = (0vec‘𝑈)) ∧ ∀𝑦 ∈ ℂ ((normCV‘𝑈)‘(𝑦( ·𝑠OLD ‘𝑈)𝑥)) = ((abs‘𝑦) · ((normCV‘𝑈)‘𝑥)) ∧ ∀𝑦 ∈ (BaseSet‘𝑈)((normCV‘𝑈)‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ (((normCV‘𝑈)‘𝑥) + ((normCV‘𝑈)‘𝑦))))) |
9 | 8 | simp1d 1066 | . 2 ⊢ (𝑈 ∈ NrmCVec → 〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉 ∈ CVecOLD) |
10 | 4, 9 | eqeltrd 2688 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∀wral 2896 〈cop 4131 class class class wbr 4583 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 1st c1st 7057 ℂcc 9813 ℝcr 9814 0cc0 9815 + caddc 9818 · cmul 9820 ≤ cle 9954 abscabs 13822 CVecOLDcvc 26797 NrmCVeccnv 26823 +𝑣 cpv 26824 BaseSetcba 26825 ·𝑠OLD cns 26826 0veccn0v 26827 normCVcnmcv 26829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-1st 7059 df-2nd 7060 df-vc 26798 df-nv 26831 df-va 26834 df-ba 26835 df-sm 26836 df-0v 26837 df-nmcv 26839 |
This theorem is referenced by: nvablo 26855 nvsf 26858 nvscl 26865 nvsid 26866 nvsass 26867 nvdi 26869 nvdir 26870 nv2 26871 nv0 26876 nvsz 26877 nvinv 26878 phop 27057 ip0i 27064 ipdirilem 27068 hlvc 27133 |
Copyright terms: Public domain | W3C validator |