MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvvc Structured version   Visualization version   GIF version

Theorem nvvc 26854
Description: The vector space component of a normed complex vector space. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
nvvc.1 𝑊 = (1st𝑈)
Assertion
Ref Expression
nvvc (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD)

Proof of Theorem nvvc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nvvc.1 . . 3 𝑊 = (1st𝑈)
2 eqid 2610 . . 3 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2610 . . 3 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
41, 2, 3nvvop 26848 . 2 (𝑈 ∈ NrmCVec → 𝑊 = ⟨( +𝑣𝑈), ( ·𝑠OLD𝑈)⟩)
5 eqid 2610 . . . 4 (BaseSet‘𝑈) = (BaseSet‘𝑈)
6 eqid 2610 . . . 4 (0vec𝑈) = (0vec𝑈)
7 eqid 2610 . . . 4 (normCV𝑈) = (normCV𝑈)
85, 2, 3, 6, 7nvi 26853 . . 3 (𝑈 ∈ NrmCVec → (⟨( +𝑣𝑈), ( ·𝑠OLD𝑈)⟩ ∈ CVecOLD ∧ (normCV𝑈):(BaseSet‘𝑈)⟶ℝ ∧ ∀𝑥 ∈ (BaseSet‘𝑈)((((normCV𝑈)‘𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ ((normCV𝑈)‘(𝑦( ·𝑠OLD𝑈)𝑥)) = ((abs‘𝑦) · ((normCV𝑈)‘𝑥)) ∧ ∀𝑦 ∈ (BaseSet‘𝑈)((normCV𝑈)‘(𝑥( +𝑣𝑈)𝑦)) ≤ (((normCV𝑈)‘𝑥) + ((normCV𝑈)‘𝑦)))))
98simp1d 1066 . 2 (𝑈 ∈ NrmCVec → ⟨( +𝑣𝑈), ( ·𝑠OLD𝑈)⟩ ∈ CVecOLD)
104, 9eqeltrd 2688 1 (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031   = wceq 1475  wcel 1977  wral 2896  cop 4131   class class class wbr 4583  wf 5800  cfv 5804  (class class class)co 6549  1st c1st 7057  cc 9813  cr 9814  0cc0 9815   + caddc 9818   · cmul 9820  cle 9954  abscabs 13822  CVecOLDcvc 26797  NrmCVeccnv 26823   +𝑣 cpv 26824  BaseSetcba 26825   ·𝑠OLD cns 26826  0veccn0v 26827  normCVcnmcv 26829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-1st 7059  df-2nd 7060  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-nmcv 26839
This theorem is referenced by:  nvablo  26855  nvsf  26858  nvscl  26865  nvsid  26866  nvsass  26867  nvdi  26869  nvdir  26870  nv2  26871  nv0  26876  nvsz  26877  nvinv  26878  phop  27057  ip0i  27064  ipdirilem  27068  hlvc  27133
  Copyright terms: Public domain W3C validator