MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip0i Unicode version

Theorem ip0i 21233
Description: A slight variant of Equation 6.46 of [Ponnusamy] p. 362, where  J is either 1 or -1 to represent +-1. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1  |-  X  =  ( BaseSet `  U )
ip1i.2  |-  G  =  ( +v `  U
)
ip1i.4  |-  S  =  ( .s OLD `  U
)
ip1i.7  |-  P  =  ( .i OLD `  U
)
ip1i.9  |-  U  e.  CPreHil
OLD
ip1i.a  |-  A  e.  X
ip1i.b  |-  B  e.  X
ip1i.c  |-  C  e.  X
ip1i.6  |-  N  =  ( normCV `  U )
ip0i.j  |-  J  e.  CC
Assertion
Ref Expression
ip0i  |-  ( ( ( ( N `  ( ( A G B ) G ( J S C ) ) ) ^ 2 )  -  ( ( N `  ( ( A G B ) G ( -u J S C ) ) ) ^ 2 ) )  +  ( ( ( N `  ( ( A G ( -u
1 S B ) ) G ( J S C ) ) ) ^ 2 )  -  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) ) ^ 2 ) ) )  =  ( 2  x.  ( ( ( N `  ( A G ( J S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) ) )

Proof of Theorem ip0i
StepHypRef Expression
1 2cn 9696 . . . 4  |-  2  e.  CC
2 ip1i.1 . . . . . . 7  |-  X  =  ( BaseSet `  U )
3 ip1i.6 . . . . . . 7  |-  N  =  ( normCV `  U )
4 ip1i.9 . . . . . . . 8  |-  U  e.  CPreHil
OLD
54phnvi 21224 . . . . . . 7  |-  U  e.  NrmCVec
6 ip1i.a . . . . . . . 8  |-  A  e.  X
7 ip0i.j . . . . . . . . 9  |-  J  e.  CC
8 ip1i.c . . . . . . . . 9  |-  C  e.  X
9 ip1i.4 . . . . . . . . . 10  |-  S  =  ( .s OLD `  U
)
102, 9nvscl 21014 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  J  e.  CC  /\  C  e.  X )  ->  ( J S C )  e.  X )
115, 7, 8, 10mp3an 1282 . . . . . . . 8  |-  ( J S C )  e.  X
12 ip1i.2 . . . . . . . . 9  |-  G  =  ( +v `  U
)
132, 12nvgcl 21006 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  ( J S C )  e.  X )  ->  ( A G ( J S C ) )  e.  X )
145, 6, 11, 13mp3an 1282 . . . . . . 7  |-  ( A G ( J S C ) )  e.  X
152, 3, 5, 14nvcli 21056 . . . . . 6  |-  ( N `
 ( A G ( J S C ) ) )  e.  RR
1615recni 8729 . . . . 5  |-  ( N `
 ( A G ( J S C ) ) )  e.  CC
1716sqcli 11062 . . . 4  |-  ( ( N `  ( A G ( J S C ) ) ) ^ 2 )  e.  CC
187negcli 8994 . . . . . . . . 9  |-  -u J  e.  CC
192, 9nvscl 21014 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  -u J  e.  CC  /\  C  e.  X )  ->  ( -u J S C )  e.  X )
205, 18, 8, 19mp3an 1282 . . . . . . . 8  |-  ( -u J S C )  e.  X
212, 12nvgcl 21006 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  ( -u J S C )  e.  X )  -> 
( A G (
-u J S C ) )  e.  X
)
225, 6, 20, 21mp3an 1282 . . . . . . 7  |-  ( A G ( -u J S C ) )  e.  X
232, 3, 5, 22nvcli 21056 . . . . . 6  |-  ( N `
 ( A G ( -u J S C ) ) )  e.  RR
2423recni 8729 . . . . 5  |-  ( N `
 ( A G ( -u J S C ) ) )  e.  CC
2524sqcli 11062 . . . 4  |-  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 )  e.  CC
261, 17, 25subdii 9108 . . 3  |-  ( 2  x.  ( ( ( N `  ( A G ( J S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) ) )  =  ( ( 2  x.  (
( N `  ( A G ( J S C ) ) ) ^ 2 ) )  -  ( 2  x.  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) ) )
271, 17mulcli 8722 . . . 4  |-  ( 2  x.  ( ( N `
 ( A G ( J S C ) ) ) ^
2 ) )  e.  CC
281, 25mulcli 8722 . . . 4  |-  ( 2  x.  ( ( N `
 ( A G ( -u J S C ) ) ) ^ 2 ) )  e.  CC
29 ip1i.b . . . . . . . 8  |-  B  e.  X
302, 3, 5, 29nvcli 21056 . . . . . . 7  |-  ( N `
 B )  e.  RR
3130recni 8729 . . . . . 6  |-  ( N `
 B )  e.  CC
3231sqcli 11062 . . . . 5  |-  ( ( N `  B ) ^ 2 )  e.  CC
331, 32mulcli 8722 . . . 4  |-  ( 2  x.  ( ( N `
 B ) ^
2 ) )  e.  CC
34 pnpcan2 8967 . . . 4  |-  ( ( ( 2  x.  (
( N `  ( A G ( J S C ) ) ) ^ 2 ) )  e.  CC  /\  (
2  x.  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) )  e.  CC  /\  (
2  x.  ( ( N `  B ) ^ 2 ) )  e.  CC )  -> 
( ( ( 2  x.  ( ( N `
 ( A G ( J S C ) ) ) ^
2 ) )  +  ( 2  x.  (
( N `  B
) ^ 2 ) ) )  -  (
( 2  x.  (
( N `  ( A G ( -u J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `  B ) ^ 2 ) ) ) )  =  ( ( 2  x.  ( ( N `
 ( A G ( J S C ) ) ) ^
2 ) )  -  ( 2  x.  (
( N `  ( A G ( -u J S C ) ) ) ^ 2 ) ) ) )
3527, 28, 33, 34mp3an 1282 . . 3  |-  ( ( ( 2  x.  (
( N `  ( A G ( J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `  B ) ^ 2 ) ) )  -  ( ( 2  x.  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `
 B ) ^
2 ) ) ) )  =  ( ( 2  x.  ( ( N `  ( A G ( J S C ) ) ) ^ 2 ) )  -  ( 2  x.  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) ) )
3626, 35eqtr4i 2276 . 2  |-  ( 2  x.  ( ( ( N `  ( A G ( J S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) ) )  =  ( ( ( 2  x.  ( ( N `  ( A G ( J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `
 B ) ^
2 ) ) )  -  ( ( 2  x.  ( ( N `
 ( A G ( -u J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `  B ) ^ 2 ) ) ) )
37 eqid 2253 . . . . . . . . . 10  |-  ( 1st `  U )  =  ( 1st `  U )
3837nvvc 21001 . . . . . . . . 9  |-  ( U  e.  NrmCVec  ->  ( 1st `  U
)  e.  CVec OLD )
3912vafval 20989 . . . . . . . . . 10  |-  G  =  ( 1st `  ( 1st `  U ) )
4039vcablo 20943 . . . . . . . . 9  |-  ( ( 1st `  U )  e.  CVec OLD  ->  G  e. 
AbelOp )
415, 38, 40mp2b 11 . . . . . . . 8  |-  G  e. 
AbelOp
426, 29, 113pm3.2i 1135 . . . . . . . 8  |-  ( A  e.  X  /\  B  e.  X  /\  ( J S C )  e.  X )
432, 12bafval 20990 . . . . . . . . 9  |-  X  =  ran  G
4443ablo32 20783 . . . . . . . 8  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  ( J S C )  e.  X ) )  ->  ( ( A G B ) G ( J S C ) )  =  ( ( A G ( J S C ) ) G B ) )
4541, 42, 44mp2an 656 . . . . . . 7  |-  ( ( A G B ) G ( J S C ) )  =  ( ( A G ( J S C ) ) G B )
4645fveq2i 5380 . . . . . 6  |-  ( N `
 ( ( A G B ) G ( J S C ) ) )  =  ( N `  (
( A G ( J S C ) ) G B ) )
4746oveq1i 5720 . . . . 5  |-  ( ( N `  ( ( A G B ) G ( J S C ) ) ) ^ 2 )  =  ( ( N `  ( ( A G ( J S C ) ) G B ) ) ^ 2 )
48 neg1cn 9693 . . . . . . . . . 10  |-  -u 1  e.  CC
492, 9nvscl 21014 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  B  e.  X )  ->  ( -u 1 S B )  e.  X )
505, 48, 29, 49mp3an 1282 . . . . . . . . 9  |-  ( -u
1 S B )  e.  X
516, 50, 113pm3.2i 1135 . . . . . . . 8  |-  ( A  e.  X  /\  ( -u 1 S B )  e.  X  /\  ( J S C )  e.  X )
5243ablo32 20783 . . . . . . . 8  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  ( -u 1 S B )  e.  X  /\  ( J S C )  e.  X ) )  ->  ( ( A G ( -u 1 S B ) ) G ( J S C ) )  =  ( ( A G ( J S C ) ) G ( -u
1 S B ) ) )
5341, 51, 52mp2an 656 . . . . . . 7  |-  ( ( A G ( -u
1 S B ) ) G ( J S C ) )  =  ( ( A G ( J S C ) ) G ( -u 1 S B ) )
5453fveq2i 5380 . . . . . 6  |-  ( N `
 ( ( A G ( -u 1 S B ) ) G ( J S C ) ) )  =  ( N `  (
( A G ( J S C ) ) G ( -u
1 S B ) ) )
5554oveq1i 5720 . . . . 5  |-  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( J S C ) ) ) ^ 2 )  =  ( ( N `
 ( ( A G ( J S C ) ) G ( -u 1 S B ) ) ) ^ 2 )
5647, 55oveq12i 5722 . . . 4  |-  ( ( ( N `  (
( A G B ) G ( J S C ) ) ) ^ 2 )  +  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( J S C ) ) ) ^
2 ) )  =  ( ( ( N `
 ( ( A G ( J S C ) ) G B ) ) ^
2 )  +  ( ( N `  (
( A G ( J S C ) ) G ( -u
1 S B ) ) ) ^ 2 ) )
572, 12, 9, 3phpar 21232 . . . . 5  |-  ( ( U  e.  CPreHil OLD  /\  ( A G ( J S C ) )  e.  X  /\  B  e.  X )  ->  (
( ( N `  ( ( A G ( J S C ) ) G B ) ) ^ 2 )  +  ( ( N `  ( ( A G ( J S C ) ) G ( -u 1 S B ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 ( A G ( J S C ) ) ) ^
2 )  +  ( ( N `  B
) ^ 2 ) ) ) )
584, 14, 29, 57mp3an 1282 . . . 4  |-  ( ( ( N `  (
( A G ( J S C ) ) G B ) ) ^ 2 )  +  ( ( N `
 ( ( A G ( J S C ) ) G ( -u 1 S B ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 ( A G ( J S C ) ) ) ^
2 )  +  ( ( N `  B
) ^ 2 ) ) )
591, 17, 32adddii 8727 . . . 4  |-  ( 2  x.  ( ( ( N `  ( A G ( J S C ) ) ) ^ 2 )  +  ( ( N `  B ) ^ 2 ) ) )  =  ( ( 2  x.  ( ( N `  ( A G ( J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `
 B ) ^
2 ) ) )
6056, 58, 593eqtri 2277 . . 3  |-  ( ( ( N `  (
( A G B ) G ( J S C ) ) ) ^ 2 )  +  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( J S C ) ) ) ^
2 ) )  =  ( ( 2  x.  ( ( N `  ( A G ( J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `
 B ) ^
2 ) ) )
616, 29, 203pm3.2i 1135 . . . . . . . 8  |-  ( A  e.  X  /\  B  e.  X  /\  ( -u J S C )  e.  X )
6243ablo32 20783 . . . . . . . 8  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  ( -u J S C )  e.  X ) )  ->  ( ( A G B ) G ( -u J S C ) )  =  ( ( A G ( -u J S C ) ) G B ) )
6341, 61, 62mp2an 656 . . . . . . 7  |-  ( ( A G B ) G ( -u J S C ) )  =  ( ( A G ( -u J S C ) ) G B )
6463fveq2i 5380 . . . . . 6  |-  ( N `
 ( ( A G B ) G ( -u J S C ) ) )  =  ( N `  ( ( A G ( -u J S C ) ) G B ) )
6564oveq1i 5720 . . . . 5  |-  ( ( N `  ( ( A G B ) G ( -u J S C ) ) ) ^ 2 )  =  ( ( N `  ( ( A G ( -u J S C ) ) G B ) ) ^
2 )
666, 50, 203pm3.2i 1135 . . . . . . . 8  |-  ( A  e.  X  /\  ( -u 1 S B )  e.  X  /\  ( -u J S C )  e.  X )
6743ablo32 20783 . . . . . . . 8  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  ( -u 1 S B )  e.  X  /\  ( -u J S C )  e.  X ) )  ->  ( ( A G ( -u 1 S B ) ) G ( -u J S C ) )  =  ( ( A G ( -u J S C ) ) G ( -u 1 S B ) ) )
6841, 66, 67mp2an 656 . . . . . . 7  |-  ( ( A G ( -u
1 S B ) ) G ( -u J S C ) )  =  ( ( A G ( -u J S C ) ) G ( -u 1 S B ) )
6968fveq2i 5380 . . . . . 6  |-  ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) )  =  ( N `  ( ( A G ( -u J S C ) ) G ( -u 1 S B ) ) )
7069oveq1i 5720 . . . . 5  |-  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( -u J S C ) ) ) ^ 2 )  =  ( ( N `
 ( ( A G ( -u J S C ) ) G ( -u 1 S B ) ) ) ^ 2 )
7165, 70oveq12i 5722 . . . 4  |-  ( ( ( N `  (
( A G B ) G ( -u J S C ) ) ) ^ 2 )  +  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) ) ^ 2 ) )  =  ( ( ( N `  ( ( A G ( -u J S C ) ) G B ) ) ^ 2 )  +  ( ( N `  ( ( A G ( -u J S C ) ) G ( -u 1 S B ) ) ) ^ 2 ) )
722, 12, 9, 3phpar 21232 . . . . 5  |-  ( ( U  e.  CPreHil OLD  /\  ( A G ( -u J S C ) )  e.  X  /\  B  e.  X )  ->  (
( ( N `  ( ( A G ( -u J S C ) ) G B ) ) ^
2 )  +  ( ( N `  (
( A G (
-u J S C ) ) G (
-u 1 S B ) ) ) ^
2 ) )  =  ( 2  x.  (
( ( N `  ( A G ( -u J S C ) ) ) ^ 2 )  +  ( ( N `
 B ) ^
2 ) ) ) )
734, 22, 29, 72mp3an 1282 . . . 4  |-  ( ( ( N `  (
( A G (
-u J S C ) ) G B ) ) ^ 2 )  +  ( ( N `  ( ( A G ( -u J S C ) ) G ( -u 1 S B ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 ( A G ( -u J S C ) ) ) ^ 2 )  +  ( ( N `  B ) ^ 2 ) ) )
741, 25, 32adddii 8727 . . . 4  |-  ( 2  x.  ( ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 )  +  ( ( N `  B ) ^ 2 ) ) )  =  ( ( 2  x.  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `
 B ) ^
2 ) ) )
7571, 73, 743eqtri 2277 . . 3  |-  ( ( ( N `  (
( A G B ) G ( -u J S C ) ) ) ^ 2 )  +  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) ) ^ 2 ) )  =  ( ( 2  x.  ( ( N `
 ( A G ( -u J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `  B ) ^ 2 ) ) )
7660, 75oveq12i 5722 . 2  |-  ( ( ( ( N `  ( ( A G B ) G ( J S C ) ) ) ^ 2 )  +  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( J S C ) ) ) ^ 2 ) )  -  ( ( ( N `  (
( A G B ) G ( -u J S C ) ) ) ^ 2 )  +  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) ) ^ 2 ) ) )  =  ( ( ( 2  x.  (
( N `  ( A G ( J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `  B ) ^ 2 ) ) )  -  ( ( 2  x.  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `
 B ) ^
2 ) ) ) )
772, 12nvgcl 21006 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X )
785, 6, 29, 77mp3an 1282 . . . . . . 7  |-  ( A G B )  e.  X
792, 12nvgcl 21006 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  ( A G B )  e.  X  /\  ( J S C )  e.  X )  ->  (
( A G B ) G ( J S C ) )  e.  X )
805, 78, 11, 79mp3an 1282 . . . . . 6  |-  ( ( A G B ) G ( J S C ) )  e.  X
812, 3, 5, 80nvcli 21056 . . . . 5  |-  ( N `
 ( ( A G B ) G ( J S C ) ) )  e.  RR
8281recni 8729 . . . 4  |-  ( N `
 ( ( A G B ) G ( J S C ) ) )  e.  CC
8382sqcli 11062 . . 3  |-  ( ( N `  ( ( A G B ) G ( J S C ) ) ) ^ 2 )  e.  CC
842, 12nvgcl 21006 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  ( -u 1 S B )  e.  X )  -> 
( A G (
-u 1 S B ) )  e.  X
)
855, 6, 50, 84mp3an 1282 . . . . . . 7  |-  ( A G ( -u 1 S B ) )  e.  X
862, 12nvgcl 21006 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  ( A G ( -u 1 S B ) )  e.  X  /\  ( J S C )  e.  X )  ->  (
( A G (
-u 1 S B ) ) G ( J S C ) )  e.  X )
875, 85, 11, 86mp3an 1282 . . . . . 6  |-  ( ( A G ( -u
1 S B ) ) G ( J S C ) )  e.  X
882, 3, 5, 87nvcli 21056 . . . . 5  |-  ( N `
 ( ( A G ( -u 1 S B ) ) G ( J S C ) ) )  e.  RR
8988recni 8729 . . . 4  |-  ( N `
 ( ( A G ( -u 1 S B ) ) G ( J S C ) ) )  e.  CC
9089sqcli 11062 . . 3  |-  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( J S C ) ) ) ^ 2 )  e.  CC
912, 12nvgcl 21006 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  ( A G B )  e.  X  /\  ( -u J S C )  e.  X )  ->  (
( A G B ) G ( -u J S C ) )  e.  X )
925, 78, 20, 91mp3an 1282 . . . . . 6  |-  ( ( A G B ) G ( -u J S C ) )  e.  X
932, 3, 5, 92nvcli 21056 . . . . 5  |-  ( N `
 ( ( A G B ) G ( -u J S C ) ) )  e.  RR
9493recni 8729 . . . 4  |-  ( N `
 ( ( A G B ) G ( -u J S C ) ) )  e.  CC
9594sqcli 11062 . . 3  |-  ( ( N `  ( ( A G B ) G ( -u J S C ) ) ) ^ 2 )  e.  CC
962, 12nvgcl 21006 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  ( A G ( -u 1 S B ) )  e.  X  /\  ( -u J S C )  e.  X )  ->  (
( A G (
-u 1 S B ) ) G (
-u J S C ) )  e.  X
)
975, 85, 20, 96mp3an 1282 . . . . . 6  |-  ( ( A G ( -u
1 S B ) ) G ( -u J S C ) )  e.  X
982, 3, 5, 97nvcli 21056 . . . . 5  |-  ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) )  e.  RR
9998recni 8729 . . . 4  |-  ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) )  e.  CC
10099sqcli 11062 . . 3  |-  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( -u J S C ) ) ) ^ 2 )  e.  CC
10183, 90, 95, 100addsub4i 9022 . 2  |-  ( ( ( ( N `  ( ( A G B ) G ( J S C ) ) ) ^ 2 )  +  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( J S C ) ) ) ^ 2 ) )  -  ( ( ( N `  (
( A G B ) G ( -u J S C ) ) ) ^ 2 )  +  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) ) ^ 2 ) ) )  =  ( ( ( ( N `  ( ( A G B ) G ( J S C ) ) ) ^ 2 )  -  ( ( N `  ( ( A G B ) G ( -u J S C ) ) ) ^ 2 ) )  +  ( ( ( N `  ( ( A G ( -u
1 S B ) ) G ( J S C ) ) ) ^ 2 )  -  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) ) ^ 2 ) ) )
10236, 76, 1013eqtr2ri 2280 1  |-  ( ( ( ( N `  ( ( A G B ) G ( J S C ) ) ) ^ 2 )  -  ( ( N `  ( ( A G B ) G ( -u J S C ) ) ) ^ 2 ) )  +  ( ( ( N `  ( ( A G ( -u
1 S B ) ) G ( J S C ) ) ) ^ 2 )  -  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) ) ^ 2 ) ) )  =  ( 2  x.  ( ( ( N `  ( A G ( J S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    /\ w3a 939    = wceq 1619    e. wcel 1621   ` cfv 4592  (class class class)co 5710   1stc1st 5972   CCcc 8615   1c1 8618    + caddc 8620    x. cmul 8622    - cmin 8917   -ucneg 8918   2c2 9675   ^cexp 10982   AbelOpcablo 20778   CVec
OLDcvc 20931   NrmCVeccnv 20970   +vcpv 20971   BaseSetcba 20972   .s
OLDcns 20973   normCVcnmcv 20976   .i OLDcdip 21103   CPreHil OLDccphlo 21220
This theorem is referenced by:  ip1ilem  21234
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-n 9627  df-2 9684  df-n0 9845  df-z 9904  df-uz 10110  df-seq 10925  df-exp 10983  df-grpo 20688  df-ablo 20779  df-vc 20932  df-nv 20978  df-va 20981  df-ba 20982  df-sm 20983  df-0v 20984  df-nmcv 20986  df-ph 21221
  Copyright terms: Public domain W3C validator