MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phpar Structured version   Visualization version   GIF version

Theorem phpar 27063
Description: The parallelogram law for an inner product space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
phpar.1 𝑋 = (BaseSet‘𝑈)
phpar.2 𝐺 = ( +𝑣𝑈)
phpar.4 𝑆 = ( ·𝑠OLD𝑈)
phpar.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
phpar ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))

Proof of Theorem phpar
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phpar.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
21vafval 26842 . . . . . 6 𝐺 = (1st ‘(1st𝑈))
3 fvex 6113 . . . . . 6 (1st ‘(1st𝑈)) ∈ V
42, 3eqeltri 2684 . . . . 5 𝐺 ∈ V
5 phpar.4 . . . . . . 7 𝑆 = ( ·𝑠OLD𝑈)
65smfval 26844 . . . . . 6 𝑆 = (2nd ‘(1st𝑈))
7 fvex 6113 . . . . . 6 (2nd ‘(1st𝑈)) ∈ V
86, 7eqeltri 2684 . . . . 5 𝑆 ∈ V
9 phpar.6 . . . . . . 7 𝑁 = (normCV𝑈)
109nmcvfval 26846 . . . . . 6 𝑁 = (2nd𝑈)
11 fvex 6113 . . . . . 6 (2nd𝑈) ∈ V
1210, 11eqeltri 2684 . . . . 5 𝑁 ∈ V
134, 8, 123pm3.2i 1232 . . . 4 (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V)
141, 5, 9phop 27057 . . . . . 6 (𝑈 ∈ CPreHilOLD𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
1514eleq1d 2672 . . . . 5 (𝑈 ∈ CPreHilOLD → (𝑈 ∈ CPreHilOLD ↔ ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ CPreHilOLD))
1615ibi 255 . . . 4 (𝑈 ∈ CPreHilOLD → ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ CPreHilOLD)
17 phpar.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
1817, 1bafval 26843 . . . . . 6 𝑋 = ran 𝐺
1918isphg 27056 . . . . 5 ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) → (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
2019simplbda 652 . . . 4 (((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) ∧ ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ CPreHilOLD) → ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))
2113, 16, 20sylancr 694 . . 3 (𝑈 ∈ CPreHilOLD → ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))
22213ad2ant1 1075 . 2 ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))
23 oveq1 6556 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦))
2423fveq2d 6107 . . . . . . 7 (𝑥 = 𝐴 → (𝑁‘(𝑥𝐺𝑦)) = (𝑁‘(𝐴𝐺𝑦)))
2524oveq1d 6564 . . . . . 6 (𝑥 = 𝐴 → ((𝑁‘(𝑥𝐺𝑦))↑2) = ((𝑁‘(𝐴𝐺𝑦))↑2))
26 oveq1 6556 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐺(-1𝑆𝑦)) = (𝐴𝐺(-1𝑆𝑦)))
2726fveq2d 6107 . . . . . . 7 (𝑥 = 𝐴 → (𝑁‘(𝑥𝐺(-1𝑆𝑦))) = (𝑁‘(𝐴𝐺(-1𝑆𝑦))))
2827oveq1d 6564 . . . . . 6 (𝑥 = 𝐴 → ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2) = ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2))
2925, 28oveq12d 6567 . . . . 5 (𝑥 = 𝐴 → (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (((𝑁‘(𝐴𝐺𝑦))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2)))
30 fveq2 6103 . . . . . . . 8 (𝑥 = 𝐴 → (𝑁𝑥) = (𝑁𝐴))
3130oveq1d 6564 . . . . . . 7 (𝑥 = 𝐴 → ((𝑁𝑥)↑2) = ((𝑁𝐴)↑2))
3231oveq1d 6564 . . . . . 6 (𝑥 = 𝐴 → (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)) = (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2)))
3332oveq2d 6565 . . . . 5 (𝑥 = 𝐴 → (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2))))
3429, 33eqeq12d 2625 . . . 4 (𝑥 = 𝐴 → ((((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) ↔ (((𝑁‘(𝐴𝐺𝑦))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2)))))
35 oveq2 6557 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
3635fveq2d 6107 . . . . . . 7 (𝑦 = 𝐵 → (𝑁‘(𝐴𝐺𝑦)) = (𝑁‘(𝐴𝐺𝐵)))
3736oveq1d 6564 . . . . . 6 (𝑦 = 𝐵 → ((𝑁‘(𝐴𝐺𝑦))↑2) = ((𝑁‘(𝐴𝐺𝐵))↑2))
38 oveq2 6557 . . . . . . . . 9 (𝑦 = 𝐵 → (-1𝑆𝑦) = (-1𝑆𝐵))
3938oveq2d 6565 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴𝐺(-1𝑆𝑦)) = (𝐴𝐺(-1𝑆𝐵)))
4039fveq2d 6107 . . . . . . 7 (𝑦 = 𝐵 → (𝑁‘(𝐴𝐺(-1𝑆𝑦))) = (𝑁‘(𝐴𝐺(-1𝑆𝐵))))
4140oveq1d 6564 . . . . . 6 (𝑦 = 𝐵 → ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2) = ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))
4237, 41oveq12d 6567 . . . . 5 (𝑦 = 𝐵 → (((𝑁‘(𝐴𝐺𝑦))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2)) = (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
43 fveq2 6103 . . . . . . . 8 (𝑦 = 𝐵 → (𝑁𝑦) = (𝑁𝐵))
4443oveq1d 6564 . . . . . . 7 (𝑦 = 𝐵 → ((𝑁𝑦)↑2) = ((𝑁𝐵)↑2))
4544oveq2d 6565 . . . . . 6 (𝑦 = 𝐵 → (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2)) = (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))
4645oveq2d 6565 . . . . 5 (𝑦 = 𝐵 → (2 · (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2))) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))
4742, 46eqeq12d 2625 . . . 4 (𝑦 = 𝐵 → ((((𝑁‘(𝐴𝐺𝑦))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2))) ↔ (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))))
4834, 47rspc2v 3293 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))))
49483adant1 1072 . 2 ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))))
5022, 49mpd 15 1 ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cop 4131  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  1c1 9816   + caddc 9818   · cmul 9820  -cneg 10146  2c2 10947  cexp 12722  NrmCVeccnv 26823   +𝑣 cpv 26824  BaseSetcba 26825   ·𝑠OLD cns 26826  normCVcnmcv 26829  CPreHilOLDccphlo 27051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-1st 7059  df-2nd 7060  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-nmcv 26839  df-ph 27052
This theorem is referenced by:  ip0i  27064  hlpar  27137
  Copyright terms: Public domain W3C validator