Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isphg Structured version   Visualization version   GIF version

Theorem isphg 27056
 Description: The predicate "is a complex inner product space." An inner product space is a normed vector space whose norm satisfies the parallelogram law. The vector (group) addition operation is 𝐺, the scalar product is 𝑆, and the norm is 𝑁. An inner product space is also called a pre-Hilbert space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
isphg.1 𝑋 = ran 𝐺
Assertion
Ref Expression
isphg ((𝐺𝐴𝑆𝐵𝑁𝐶) → (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem isphg
Dummy variables 𝑔 𝑛 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ph 27052 . . 3 CPreHilOLD = (NrmCVec ∩ {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))})
21elin2 3763 . 2 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ∧ ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))}))
3 rneq 5272 . . . . . 6 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
4 isphg.1 . . . . . 6 𝑋 = ran 𝐺
53, 4syl6eqr 2662 . . . . 5 (𝑔 = 𝐺 → ran 𝑔 = 𝑋)
6 oveq 6555 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦))
76fveq2d 6107 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑛‘(𝑥𝑔𝑦)) = (𝑛‘(𝑥𝐺𝑦)))
87oveq1d 6564 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑛‘(𝑥𝑔𝑦))↑2) = ((𝑛‘(𝑥𝐺𝑦))↑2))
9 oveq 6555 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑥𝑔(-1𝑠𝑦)) = (𝑥𝐺(-1𝑠𝑦)))
109fveq2d 6107 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑛‘(𝑥𝑔(-1𝑠𝑦))) = (𝑛‘(𝑥𝐺(-1𝑠𝑦))))
1110oveq1d 6564 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2) = ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2))
128, 11oveq12d 6567 . . . . . . 7 (𝑔 = 𝐺 → (((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)))
1312eqeq1d 2612 . . . . . 6 (𝑔 = 𝐺 → ((((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2))) ↔ (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))))
145, 13raleqbidv 3129 . . . . 5 (𝑔 = 𝐺 → (∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2))) ↔ ∀𝑦𝑋 (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))))
155, 14raleqbidv 3129 . . . 4 (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2))) ↔ ∀𝑥𝑋𝑦𝑋 (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))))
16 oveq 6555 . . . . . . . . . 10 (𝑠 = 𝑆 → (-1𝑠𝑦) = (-1𝑆𝑦))
1716oveq2d 6565 . . . . . . . . 9 (𝑠 = 𝑆 → (𝑥𝐺(-1𝑠𝑦)) = (𝑥𝐺(-1𝑆𝑦)))
1817fveq2d 6107 . . . . . . . 8 (𝑠 = 𝑆 → (𝑛‘(𝑥𝐺(-1𝑠𝑦))) = (𝑛‘(𝑥𝐺(-1𝑆𝑦))))
1918oveq1d 6564 . . . . . . 7 (𝑠 = 𝑆 → ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2) = ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2))
2019oveq2d 6565 . . . . . 6 (𝑠 = 𝑆 → (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)))
2120eqeq1d 2612 . . . . 5 (𝑠 = 𝑆 → ((((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2))) ↔ (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))))
22212ralbidv 2972 . . . 4 (𝑠 = 𝑆 → (∀𝑥𝑋𝑦𝑋 (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2))) ↔ ∀𝑥𝑋𝑦𝑋 (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))))
23 fveq1 6102 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛‘(𝑥𝐺𝑦)) = (𝑁‘(𝑥𝐺𝑦)))
2423oveq1d 6564 . . . . . . 7 (𝑛 = 𝑁 → ((𝑛‘(𝑥𝐺𝑦))↑2) = ((𝑁‘(𝑥𝐺𝑦))↑2))
25 fveq1 6102 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛‘(𝑥𝐺(-1𝑆𝑦))) = (𝑁‘(𝑥𝐺(-1𝑆𝑦))))
2625oveq1d 6564 . . . . . . 7 (𝑛 = 𝑁 → ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2) = ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2))
2724, 26oveq12d 6567 . . . . . 6 (𝑛 = 𝑁 → (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)))
28 fveq1 6102 . . . . . . . . 9 (𝑛 = 𝑁 → (𝑛𝑥) = (𝑁𝑥))
2928oveq1d 6564 . . . . . . . 8 (𝑛 = 𝑁 → ((𝑛𝑥)↑2) = ((𝑁𝑥)↑2))
30 fveq1 6102 . . . . . . . . 9 (𝑛 = 𝑁 → (𝑛𝑦) = (𝑁𝑦))
3130oveq1d 6564 . . . . . . . 8 (𝑛 = 𝑁 → ((𝑛𝑦)↑2) = ((𝑁𝑦)↑2))
3229, 31oveq12d 6567 . . . . . . 7 (𝑛 = 𝑁 → (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)) = (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))
3332oveq2d 6565 . . . . . 6 (𝑛 = 𝑁 → (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2))) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))
3427, 33eqeq12d 2625 . . . . 5 (𝑛 = 𝑁 → ((((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2))) ↔ (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
35342ralbidv 2972 . . . 4 (𝑛 = 𝑁 → (∀𝑥𝑋𝑦𝑋 (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2))) ↔ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
3615, 22, 35eloprabg 6646 . . 3 ((𝐺𝐴𝑆𝐵𝑁𝐶) → (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))} ↔ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
3736anbi2d 736 . 2 ((𝐺𝐴𝑆𝐵𝑁𝐶) → ((⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ∧ ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))}) ↔ (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
382, 37syl5bb 271 1 ((𝐺𝐴𝑆𝐵𝑁𝐶) → (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ⟨cop 4131  ran crn 5039  ‘cfv 5804  (class class class)co 6549  {coprab 6550  1c1 9816   + caddc 9818   · cmul 9820  -cneg 10146  2c2 10947  ↑cexp 12722  NrmCVeccnv 26823  CPreHilOLDccphlo 27051 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-cnv 5046  df-dm 5048  df-rn 5049  df-iota 5768  df-fv 5812  df-ov 6552  df-oprab 6553  df-ph 27052 This theorem is referenced by:  cncph  27058  isph  27061  phpar  27063  hhph  27419
 Copyright terms: Public domain W3C validator