Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bafval Structured version   Visualization version   GIF version

Theorem bafval 26843
 Description: Value of the function for the base set of a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
bafval.1 𝑋 = (BaseSet‘𝑈)
bafval.2 𝐺 = ( +𝑣𝑈)
Assertion
Ref Expression
bafval 𝑋 = ran 𝐺

Proof of Theorem bafval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . . . 5 (𝑢 = 𝑈 → ( +𝑣𝑢) = ( +𝑣𝑈))
21rneqd 5274 . . . 4 (𝑢 = 𝑈 → ran ( +𝑣𝑢) = ran ( +𝑣𝑈))
3 df-ba 26835 . . . 4 BaseSet = (𝑢 ∈ V ↦ ran ( +𝑣𝑢))
4 fvex 6113 . . . . 5 ( +𝑣𝑈) ∈ V
54rnex 6992 . . . 4 ran ( +𝑣𝑈) ∈ V
62, 3, 5fvmpt 6191 . . 3 (𝑈 ∈ V → (BaseSet‘𝑈) = ran ( +𝑣𝑈))
7 rn0 5298 . . . . 5 ran ∅ = ∅
87eqcomi 2619 . . . 4 ∅ = ran ∅
9 fvprc 6097 . . . 4 𝑈 ∈ V → (BaseSet‘𝑈) = ∅)
10 fvprc 6097 . . . . 5 𝑈 ∈ V → ( +𝑣𝑈) = ∅)
1110rneqd 5274 . . . 4 𝑈 ∈ V → ran ( +𝑣𝑈) = ran ∅)
128, 9, 113eqtr4a 2670 . . 3 𝑈 ∈ V → (BaseSet‘𝑈) = ran ( +𝑣𝑈))
136, 12pm2.61i 175 . 2 (BaseSet‘𝑈) = ran ( +𝑣𝑈)
14 bafval.1 . 2 𝑋 = (BaseSet‘𝑈)
15 bafval.2 . . 3 𝐺 = ( +𝑣𝑈)
1615rneqi 5273 . 2 ran 𝐺 = ran ( +𝑣𝑈)
1713, 14, 163eqtr4i 2642 1 𝑋 = ran 𝐺
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   = wceq 1475   ∈ wcel 1977  Vcvv 3173  ∅c0 3874  ran crn 5039  ‘cfv 5804   +𝑣 cpv 26824  BaseSetcba 26825 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fv 5812  df-ba 26835 This theorem is referenced by:  nvi  26853  nvgf  26857  nvsf  26858  nvgcl  26859  nvcom  26860  nvass  26861  nvadd32  26862  nvrcan  26863  nvadd4  26864  nvscl  26865  nvsid  26866  nvsass  26867  nvdi  26869  nvdir  26870  nv2  26871  nvzcl  26873  nv0rid  26874  nv0lid  26875  nv0  26876  nvsz  26877  nvinv  26878  nvinvfval  26879  nvmval  26881  nvmfval  26883  nvnnncan1  26886  nvnegneg  26888  nvrinv  26890  nvlinv  26891  nvaddsub  26894  cnnvba  26918  sspba  26966  isph  27061  phpar  27063  ip0i  27064  ipdirilem  27068  hhba  27408  hhssabloilem  27502  hhshsslem1  27508
 Copyright terms: Public domain W3C validator