Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumdvdsmul Structured version   Visualization version   GIF version

Theorem fsumdvdsmul 24721
 Description: Product of two divisor sums. (This is also the main part of the proof that "Σ𝑘 ∥ 𝑁𝐹(𝑘) is a multiplicative function if 𝐹 is".) (Contributed by Mario Carneiro, 2-Jul-2015.)
Hypotheses
Ref Expression
dvdsmulf1o.1 (𝜑𝑀 ∈ ℕ)
dvdsmulf1o.2 (𝜑𝑁 ∈ ℕ)
dvdsmulf1o.3 (𝜑 → (𝑀 gcd 𝑁) = 1)
dvdsmulf1o.x 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥𝑀}
dvdsmulf1o.y 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
dvdsmulf1o.z 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)}
fsumdvdsmul.4 ((𝜑𝑗𝑋) → 𝐴 ∈ ℂ)
fsumdvdsmul.5 ((𝜑𝑘𝑌) → 𝐵 ∈ ℂ)
fsumdvdsmul.6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → (𝐴 · 𝐵) = 𝐷)
fsumdvdsmul.7 (𝑖 = (𝑗 · 𝑘) → 𝐶 = 𝐷)
Assertion
Ref Expression
fsumdvdsmul (𝜑 → (Σ𝑗𝑋 𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑖𝑍 𝐶)
Distinct variable groups:   𝐴,𝑘   𝐷,𝑖   𝑥,𝑀   𝑥,𝑁   𝑖,𝑗,𝑘,𝑋   𝐵,𝑗   𝐶,𝑗,𝑘   𝑖,𝑌,𝑗,𝑘   𝑖,𝑍,𝑗   𝑥,𝑖,𝑗,𝑘   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑖,𝑗)   𝐵(𝑥,𝑖,𝑘)   𝐶(𝑥,𝑖)   𝐷(𝑥,𝑗,𝑘)   𝑀(𝑖,𝑗,𝑘)   𝑁(𝑖,𝑗,𝑘)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥,𝑘)

Proof of Theorem fsumdvdsmul
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 12634 . . . 4 (𝜑 → (1...𝑀) ∈ Fin)
2 dvdsmulf1o.x . . . . 5 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥𝑀}
3 dvdsmulf1o.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
4 dvdsssfz1 14878 . . . . . 6 (𝑀 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑀} ⊆ (1...𝑀))
53, 4syl 17 . . . . 5 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝑀} ⊆ (1...𝑀))
62, 5syl5eqss 3612 . . . 4 (𝜑𝑋 ⊆ (1...𝑀))
7 ssfi 8065 . . . 4 (((1...𝑀) ∈ Fin ∧ 𝑋 ⊆ (1...𝑀)) → 𝑋 ∈ Fin)
81, 6, 7syl2anc 691 . . 3 (𝜑𝑋 ∈ Fin)
9 fzfid 12634 . . . . 5 (𝜑 → (1...𝑁) ∈ Fin)
10 dvdsmulf1o.y . . . . . 6 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
11 dvdsmulf1o.2 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
12 dvdsssfz1 14878 . . . . . . 7 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
1311, 12syl 17 . . . . . 6 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
1410, 13syl5eqss 3612 . . . . 5 (𝜑𝑌 ⊆ (1...𝑁))
15 ssfi 8065 . . . . 5 (((1...𝑁) ∈ Fin ∧ 𝑌 ⊆ (1...𝑁)) → 𝑌 ∈ Fin)
169, 14, 15syl2anc 691 . . . 4 (𝜑𝑌 ∈ Fin)
17 fsumdvdsmul.5 . . . 4 ((𝜑𝑘𝑌) → 𝐵 ∈ ℂ)
1816, 17fsumcl 14311 . . 3 (𝜑 → Σ𝑘𝑌 𝐵 ∈ ℂ)
19 fsumdvdsmul.4 . . 3 ((𝜑𝑗𝑋) → 𝐴 ∈ ℂ)
208, 18, 19fsummulc1 14359 . 2 (𝜑 → (Σ𝑗𝑋 𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑗𝑋 (𝐴 · Σ𝑘𝑌 𝐵))
2116adantr 480 . . . . 5 ((𝜑𝑗𝑋) → 𝑌 ∈ Fin)
2217adantlr 747 . . . . 5 (((𝜑𝑗𝑋) ∧ 𝑘𝑌) → 𝐵 ∈ ℂ)
2321, 19, 22fsummulc2 14358 . . . 4 ((𝜑𝑗𝑋) → (𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑘𝑌 (𝐴 · 𝐵))
24 fsumdvdsmul.6 . . . . . 6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → (𝐴 · 𝐵) = 𝐷)
2524anassrs 678 . . . . 5 (((𝜑𝑗𝑋) ∧ 𝑘𝑌) → (𝐴 · 𝐵) = 𝐷)
2625sumeq2dv 14281 . . . 4 ((𝜑𝑗𝑋) → Σ𝑘𝑌 (𝐴 · 𝐵) = Σ𝑘𝑌 𝐷)
2723, 26eqtrd 2644 . . 3 ((𝜑𝑗𝑋) → (𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑘𝑌 𝐷)
2827sumeq2dv 14281 . 2 (𝜑 → Σ𝑗𝑋 (𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑗𝑋 Σ𝑘𝑌 𝐷)
29 fveq2 6103 . . . . . . 7 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) = ( · ‘⟨𝑗, 𝑘⟩))
30 df-ov 6552 . . . . . . 7 (𝑗 · 𝑘) = ( · ‘⟨𝑗, 𝑘⟩)
3129, 30syl6eqr 2662 . . . . . 6 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) = (𝑗 · 𝑘))
3231csbeq1d 3506 . . . . 5 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) / 𝑖𝐶 = (𝑗 · 𝑘) / 𝑖𝐶)
33 ovex 6577 . . . . . 6 (𝑗 · 𝑘) ∈ V
34 fsumdvdsmul.7 . . . . . 6 (𝑖 = (𝑗 · 𝑘) → 𝐶 = 𝐷)
3533, 34csbie 3525 . . . . 5 (𝑗 · 𝑘) / 𝑖𝐶 = 𝐷
3632, 35syl6eq 2660 . . . 4 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) / 𝑖𝐶 = 𝐷)
3719adantrr 749 . . . . . 6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → 𝐴 ∈ ℂ)
3817adantrl 748 . . . . . 6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → 𝐵 ∈ ℂ)
3937, 38mulcld 9939 . . . . 5 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → (𝐴 · 𝐵) ∈ ℂ)
4024, 39eqeltrrd 2689 . . . 4 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → 𝐷 ∈ ℂ)
4136, 8, 16, 40fsumxp 14345 . . 3 (𝜑 → Σ𝑗𝑋 Σ𝑘𝑌 𝐷 = Σ𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶)
42 nfcv 2751 . . . . 5 𝑤𝐶
43 nfcsb1v 3515 . . . . 5 𝑖𝑤 / 𝑖𝐶
44 csbeq1a 3508 . . . . 5 (𝑖 = 𝑤𝐶 = 𝑤 / 𝑖𝐶)
4542, 43, 44cbvsumi 14275 . . . 4 Σ𝑖𝑍 𝐶 = Σ𝑤𝑍 𝑤 / 𝑖𝐶
46 csbeq1 3502 . . . . 5 (𝑤 = ( · ‘𝑧) → 𝑤 / 𝑖𝐶 = ( · ‘𝑧) / 𝑖𝐶)
47 xpfi 8116 . . . . . 6 ((𝑋 ∈ Fin ∧ 𝑌 ∈ Fin) → (𝑋 × 𝑌) ∈ Fin)
488, 16, 47syl2anc 691 . . . . 5 (𝜑 → (𝑋 × 𝑌) ∈ Fin)
49 dvdsmulf1o.3 . . . . . 6 (𝜑 → (𝑀 gcd 𝑁) = 1)
50 dvdsmulf1o.z . . . . . 6 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)}
513, 11, 49, 2, 10, 50dvdsmulf1o 24720 . . . . 5 (𝜑 → ( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto𝑍)
52 fvres 6117 . . . . . 6 (𝑧 ∈ (𝑋 × 𝑌) → (( · ↾ (𝑋 × 𝑌))‘𝑧) = ( · ‘𝑧))
5352adantl 481 . . . . 5 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → (( · ↾ (𝑋 × 𝑌))‘𝑧) = ( · ‘𝑧))
5440ralrimivva 2954 . . . . . . . 8 (𝜑 → ∀𝑗𝑋𝑘𝑌 𝐷 ∈ ℂ)
5536eleq1d 2672 . . . . . . . . 9 (𝑧 = ⟨𝑗, 𝑘⟩ → (( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ 𝐷 ∈ ℂ))
5655ralxp 5185 . . . . . . . 8 (∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ ∀𝑗𝑋𝑘𝑌 𝐷 ∈ ℂ)
5754, 56sylibr 223 . . . . . . 7 (𝜑 → ∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ)
58 ax-mulf 9895 . . . . . . . . . 10 · :(ℂ × ℂ)⟶ℂ
59 ffn 5958 . . . . . . . . . 10 ( · :(ℂ × ℂ)⟶ℂ → · Fn (ℂ × ℂ))
6058, 59ax-mp 5 . . . . . . . . 9 · Fn (ℂ × ℂ)
61 ssrab2 3650 . . . . . . . . . . . 12 {𝑥 ∈ ℕ ∣ 𝑥𝑀} ⊆ ℕ
622, 61eqsstri 3598 . . . . . . . . . . 11 𝑋 ⊆ ℕ
63 nnsscn 10902 . . . . . . . . . . 11 ℕ ⊆ ℂ
6462, 63sstri 3577 . . . . . . . . . 10 𝑋 ⊆ ℂ
65 ssrab2 3650 . . . . . . . . . . . 12 {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ ℕ
6610, 65eqsstri 3598 . . . . . . . . . . 11 𝑌 ⊆ ℕ
6766, 63sstri 3577 . . . . . . . . . 10 𝑌 ⊆ ℂ
68 xpss12 5148 . . . . . . . . . 10 ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋 × 𝑌) ⊆ (ℂ × ℂ))
6964, 67, 68mp2an 704 . . . . . . . . 9 (𝑋 × 𝑌) ⊆ (ℂ × ℂ)
7046eleq1d 2672 . . . . . . . . . 10 (𝑤 = ( · ‘𝑧) → (𝑤 / 𝑖𝐶 ∈ ℂ ↔ ( · ‘𝑧) / 𝑖𝐶 ∈ ℂ))
7170ralima 6402 . . . . . . . . 9 (( · Fn (ℂ × ℂ) ∧ (𝑋 × 𝑌) ⊆ (ℂ × ℂ)) → (∀𝑤 ∈ ( · “ (𝑋 × 𝑌))𝑤 / 𝑖𝐶 ∈ ℂ ↔ ∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ))
7260, 69, 71mp2an 704 . . . . . . . 8 (∀𝑤 ∈ ( · “ (𝑋 × 𝑌))𝑤 / 𝑖𝐶 ∈ ℂ ↔ ∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ)
73 df-ima 5051 . . . . . . . . . 10 ( · “ (𝑋 × 𝑌)) = ran ( · ↾ (𝑋 × 𝑌))
74 f1ofo 6057 . . . . . . . . . . 11 (( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto𝑍 → ( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑍)
75 forn 6031 . . . . . . . . . . 11 (( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑍 → ran ( · ↾ (𝑋 × 𝑌)) = 𝑍)
7651, 74, 753syl 18 . . . . . . . . . 10 (𝜑 → ran ( · ↾ (𝑋 × 𝑌)) = 𝑍)
7773, 76syl5eq 2656 . . . . . . . . 9 (𝜑 → ( · “ (𝑋 × 𝑌)) = 𝑍)
7877raleqdv 3121 . . . . . . . 8 (𝜑 → (∀𝑤 ∈ ( · “ (𝑋 × 𝑌))𝑤 / 𝑖𝐶 ∈ ℂ ↔ ∀𝑤𝑍 𝑤 / 𝑖𝐶 ∈ ℂ))
7972, 78syl5bbr 273 . . . . . . 7 (𝜑 → (∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ ∀𝑤𝑍 𝑤 / 𝑖𝐶 ∈ ℂ))
8057, 79mpbid 221 . . . . . 6 (𝜑 → ∀𝑤𝑍 𝑤 / 𝑖𝐶 ∈ ℂ)
8180r19.21bi 2916 . . . . 5 ((𝜑𝑤𝑍) → 𝑤 / 𝑖𝐶 ∈ ℂ)
8246, 48, 51, 53, 81fsumf1o 14301 . . . 4 (𝜑 → Σ𝑤𝑍 𝑤 / 𝑖𝐶 = Σ𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶)
8345, 82syl5eq 2656 . . 3 (𝜑 → Σ𝑖𝑍 𝐶 = Σ𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶)
8441, 83eqtr4d 2647 . 2 (𝜑 → Σ𝑗𝑋 Σ𝑘𝑌 𝐷 = Σ𝑖𝑍 𝐶)
8520, 28, 843eqtrd 2648 1 (𝜑 → (Σ𝑗𝑋 𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑖𝑍 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {crab 2900  ⦋csb 3499   ⊆ wss 3540  ⟨cop 4131   class class class wbr 4583   × cxp 5036  ran crn 5039   ↾ cres 5040   “ cima 5041   Fn wfn 5799  ⟶wf 5800  –onto→wfo 5802  –1-1-onto→wf1o 5803  ‘cfv 5804  (class class class)co 6549  Fincfn 7841  ℂcc 9813  1c1 9816   · cmul 9820  ℕcn 10897  ...cfz 12197  Σcsu 14264   ∥ cdvds 14821   gcd cgcd 15054 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-gcd 15055 This theorem is referenced by:  sgmmul  24726  dchrisum0fmul  24995
 Copyright terms: Public domain W3C validator