MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumdvdsmul Structured version   Unicode version

Theorem fsumdvdsmul 22515
Description: Product of two divisor sums. (This is also the main part of the proof that " sum_ k  ||  N F ( k ) is a multiplicative function if  F is".) (Contributed by Mario Carneiro, 2-Jul-2015.)
Hypotheses
Ref Expression
dvdsmulf1o.1  |-  ( ph  ->  M  e.  NN )
dvdsmulf1o.2  |-  ( ph  ->  N  e.  NN )
dvdsmulf1o.3  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
dvdsmulf1o.x  |-  X  =  { x  e.  NN  |  x  ||  M }
dvdsmulf1o.y  |-  Y  =  { x  e.  NN  |  x  ||  N }
dvdsmulf1o.z  |-  Z  =  { x  e.  NN  |  x  ||  ( M  x.  N ) }
fsumdvdsmul.4  |-  ( (
ph  /\  j  e.  X )  ->  A  e.  CC )
fsumdvdsmul.5  |-  ( (
ph  /\  k  e.  Y )  ->  B  e.  CC )
fsumdvdsmul.6  |-  ( (
ph  /\  ( j  e.  X  /\  k  e.  Y ) )  -> 
( A  x.  B
)  =  D )
fsumdvdsmul.7  |-  ( i  =  ( j  x.  k )  ->  C  =  D )
Assertion
Ref Expression
fsumdvdsmul  |-  ( ph  ->  ( sum_ j  e.  X  A  x.  sum_ k  e.  Y  B )  = 
sum_ i  e.  Z  C )
Distinct variable groups:    A, k    D, i    x, M    x, N    i, j, k, X    B, j    C, j, k   
i, Y, j, k   
i, Z, j    x, i, j, k    ph, i,
j, k
Allowed substitution hints:    ph( x)    A( x, i, j)    B( x, i, k)    C( x, i)    D( x, j, k)    M( i, j, k)    N( i, j, k)    X( x)    Y( x)    Z( x, k)

Proof of Theorem fsumdvdsmul
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 11787 . . . 4  |-  ( ph  ->  ( 1 ... M
)  e.  Fin )
2 dvdsmulf1o.x . . . . 5  |-  X  =  { x  e.  NN  |  x  ||  M }
3 dvdsmulf1o.1 . . . . . 6  |-  ( ph  ->  M  e.  NN )
4 sgmss 22424 . . . . . 6  |-  ( M  e.  NN  ->  { x  e.  NN  |  x  ||  M }  C_  ( 1 ... M ) )
53, 4syl 16 . . . . 5  |-  ( ph  ->  { x  e.  NN  |  x  ||  M }  C_  ( 1 ... M
) )
62, 5syl5eqss 3395 . . . 4  |-  ( ph  ->  X  C_  ( 1 ... M ) )
7 ssfi 7525 . . . 4  |-  ( ( ( 1 ... M
)  e.  Fin  /\  X  C_  ( 1 ... M ) )  ->  X  e.  Fin )
81, 6, 7syl2anc 661 . . 3  |-  ( ph  ->  X  e.  Fin )
9 fzfid 11787 . . . . 5  |-  ( ph  ->  ( 1 ... N
)  e.  Fin )
10 dvdsmulf1o.y . . . . . 6  |-  Y  =  { x  e.  NN  |  x  ||  N }
11 dvdsmulf1o.2 . . . . . . 7  |-  ( ph  ->  N  e.  NN )
12 sgmss 22424 . . . . . . 7  |-  ( N  e.  NN  ->  { x  e.  NN  |  x  ||  N }  C_  ( 1 ... N ) )
1311, 12syl 16 . . . . . 6  |-  ( ph  ->  { x  e.  NN  |  x  ||  N }  C_  ( 1 ... N
) )
1410, 13syl5eqss 3395 . . . . 5  |-  ( ph  ->  Y  C_  ( 1 ... N ) )
15 ssfi 7525 . . . . 5  |-  ( ( ( 1 ... N
)  e.  Fin  /\  Y  C_  ( 1 ... N ) )  ->  Y  e.  Fin )
169, 14, 15syl2anc 661 . . . 4  |-  ( ph  ->  Y  e.  Fin )
17 fsumdvdsmul.5 . . . 4  |-  ( (
ph  /\  k  e.  Y )  ->  B  e.  CC )
1816, 17fsumcl 13202 . . 3  |-  ( ph  -> 
sum_ k  e.  Y  B  e.  CC )
19 fsumdvdsmul.4 . . 3  |-  ( (
ph  /\  j  e.  X )  ->  A  e.  CC )
208, 18, 19fsummulc1 13244 . 2  |-  ( ph  ->  ( sum_ j  e.  X  A  x.  sum_ k  e.  Y  B )  = 
sum_ j  e.  X  ( A  x.  sum_ k  e.  Y  B )
)
2116adantr 465 . . . . 5  |-  ( (
ph  /\  j  e.  X )  ->  Y  e.  Fin )
2217adantlr 714 . . . . 5  |-  ( ( ( ph  /\  j  e.  X )  /\  k  e.  Y )  ->  B  e.  CC )
2321, 19, 22fsummulc2 13243 . . . 4  |-  ( (
ph  /\  j  e.  X )  ->  ( A  x.  sum_ k  e.  Y  B )  = 
sum_ k  e.  Y  ( A  x.  B
) )
24 fsumdvdsmul.6 . . . . . 6  |-  ( (
ph  /\  ( j  e.  X  /\  k  e.  Y ) )  -> 
( A  x.  B
)  =  D )
2524anassrs 648 . . . . 5  |-  ( ( ( ph  /\  j  e.  X )  /\  k  e.  Y )  ->  ( A  x.  B )  =  D )
2625sumeq2dv 13172 . . . 4  |-  ( (
ph  /\  j  e.  X )  ->  sum_ k  e.  Y  ( A  x.  B )  =  sum_ k  e.  Y  D
)
2723, 26eqtrd 2470 . . 3  |-  ( (
ph  /\  j  e.  X )  ->  ( A  x.  sum_ k  e.  Y  B )  = 
sum_ k  e.  Y  D )
2827sumeq2dv 13172 . 2  |-  ( ph  -> 
sum_ j  e.  X  ( A  x.  sum_ k  e.  Y  B )  =  sum_ j  e.  X  sum_ k  e.  Y  D
)
29 fveq2 5686 . . . . . . 7  |-  ( z  =  <. j ,  k
>.  ->  (  x.  `  z )  =  (  x.  `  <. j ,  k >. )
)
30 df-ov 6089 . . . . . . 7  |-  ( j  x.  k )  =  (  x.  `  <. j ,  k >. )
3129, 30syl6eqr 2488 . . . . . 6  |-  ( z  =  <. j ,  k
>.  ->  (  x.  `  z )  =  ( j  x.  k ) )
3231csbeq1d 3290 . . . . 5  |-  ( z  =  <. j ,  k
>.  ->  [_ (  x.  `  z )  /  i ]_ C  =  [_ (
j  x.  k )  /  i ]_ C
)
33 ovex 6111 . . . . . 6  |-  ( j  x.  k )  e. 
_V
34 nfcv 2574 . . . . . 6  |-  F/_ i D
35 fsumdvdsmul.7 . . . . . 6  |-  ( i  =  ( j  x.  k )  ->  C  =  D )
3633, 34, 35csbief 3308 . . . . 5  |-  [_ (
j  x.  k )  /  i ]_ C  =  D
3732, 36syl6eq 2486 . . . 4  |-  ( z  =  <. j ,  k
>.  ->  [_ (  x.  `  z )  /  i ]_ C  =  D
)
3819adantrr 716 . . . . . 6  |-  ( (
ph  /\  ( j  e.  X  /\  k  e.  Y ) )  ->  A  e.  CC )
3917adantrl 715 . . . . . 6  |-  ( (
ph  /\  ( j  e.  X  /\  k  e.  Y ) )  ->  B  e.  CC )
4038, 39mulcld 9398 . . . . 5  |-  ( (
ph  /\  ( j  e.  X  /\  k  e.  Y ) )  -> 
( A  x.  B
)  e.  CC )
4124, 40eqeltrrd 2513 . . . 4  |-  ( (
ph  /\  ( j  e.  X  /\  k  e.  Y ) )  ->  D  e.  CC )
4237, 8, 16, 41fsumxp 13231 . . 3  |-  ( ph  -> 
sum_ j  e.  X  sum_ k  e.  Y  D  =  sum_ z  e.  ( X  X.  Y )
[_ (  x.  `  z )  /  i ]_ C )
43 nfcv 2574 . . . . 5  |-  F/_ w C
44 nfcsb1v 3299 . . . . 5  |-  F/_ i [_ w  /  i ]_ C
45 csbeq1a 3292 . . . . 5  |-  ( i  =  w  ->  C  =  [_ w  /  i ]_ C )
4643, 44, 45cbvsumi 13166 . . . 4  |-  sum_ i  e.  Z  C  =  sum_ w  e.  Z  [_ w  /  i ]_ C
47 csbeq1 3286 . . . . 5  |-  ( w  =  (  x.  `  z )  ->  [_ w  /  i ]_ C  =  [_ (  x.  `  z )  /  i ]_ C )
48 xpfi 7575 . . . . . 6  |-  ( ( X  e.  Fin  /\  Y  e.  Fin )  ->  ( X  X.  Y
)  e.  Fin )
498, 16, 48syl2anc 661 . . . . 5  |-  ( ph  ->  ( X  X.  Y
)  e.  Fin )
50 dvdsmulf1o.3 . . . . . 6  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
51 dvdsmulf1o.z . . . . . 6  |-  Z  =  { x  e.  NN  |  x  ||  ( M  x.  N ) }
523, 11, 50, 2, 10, 51dvdsmulf1o 22514 . . . . 5  |-  ( ph  ->  (  x.  |`  ( X  X.  Y ) ) : ( X  X.  Y ) -1-1-onto-> Z )
53 fvres 5699 . . . . . 6  |-  ( z  e.  ( X  X.  Y )  ->  (
(  x.  |`  ( X  X.  Y ) ) `
 z )  =  (  x.  `  z
) )
5453adantl 466 . . . . 5  |-  ( (
ph  /\  z  e.  ( X  X.  Y
) )  ->  (
(  x.  |`  ( X  X.  Y ) ) `
 z )  =  (  x.  `  z
) )
5541ralrimivva 2803 . . . . . . . 8  |-  ( ph  ->  A. j  e.  X  A. k  e.  Y  D  e.  CC )
5637eleq1d 2504 . . . . . . . . 9  |-  ( z  =  <. j ,  k
>.  ->  ( [_ (  x.  `  z )  / 
i ]_ C  e.  CC  <->  D  e.  CC ) )
5756ralxp 4976 . . . . . . . 8  |-  ( A. z  e.  ( X  X.  Y ) [_ (  x.  `  z )  / 
i ]_ C  e.  CC  <->  A. j  e.  X  A. k  e.  Y  D  e.  CC )
5855, 57sylibr 212 . . . . . . 7  |-  ( ph  ->  A. z  e.  ( X  X.  Y )
[_ (  x.  `  z )  /  i ]_ C  e.  CC )
59 ax-mulf 9354 . . . . . . . . . 10  |-  x.  :
( CC  X.  CC )
--> CC
60 ffn 5554 . . . . . . . . . 10  |-  (  x.  : ( CC  X.  CC ) --> CC  ->  x.  Fn  ( CC  X.  CC ) )
6159, 60ax-mp 5 . . . . . . . . 9  |-  x.  Fn  ( CC  X.  CC )
62 ssrab2 3432 . . . . . . . . . . . 12  |-  { x  e.  NN  |  x  ||  M }  C_  NN
632, 62eqsstri 3381 . . . . . . . . . . 11  |-  X  C_  NN
64 nnsscn 10319 . . . . . . . . . . 11  |-  NN  C_  CC
6563, 64sstri 3360 . . . . . . . . . 10  |-  X  C_  CC
66 ssrab2 3432 . . . . . . . . . . . 12  |-  { x  e.  NN  |  x  ||  N }  C_  NN
6710, 66eqsstri 3381 . . . . . . . . . . 11  |-  Y  C_  NN
6867, 64sstri 3360 . . . . . . . . . 10  |-  Y  C_  CC
69 xpss12 4940 . . . . . . . . . 10  |-  ( ( X  C_  CC  /\  Y  C_  CC )  ->  ( X  X.  Y )  C_  ( CC  X.  CC ) )
7065, 68, 69mp2an 672 . . . . . . . . 9  |-  ( X  X.  Y )  C_  ( CC  X.  CC )
7147eleq1d 2504 . . . . . . . . . 10  |-  ( w  =  (  x.  `  z )  ->  ( [_ w  /  i ]_ C  e.  CC  <->  [_ (  x.  `  z
)  /  i ]_ C  e.  CC )
)
7271ralima 5952 . . . . . . . . 9  |-  ( (  x.  Fn  ( CC 
X.  CC )  /\  ( X  X.  Y
)  C_  ( CC  X.  CC ) )  -> 
( A. w  e.  (  x.  " ( X  X.  Y ) )
[_ w  /  i ]_ C  e.  CC  <->  A. z  e.  ( X  X.  Y ) [_ (  x.  `  z )  /  i ]_ C  e.  CC ) )
7361, 70, 72mp2an 672 . . . . . . . 8  |-  ( A. w  e.  (  x.  " ( X  X.  Y
) ) [_ w  /  i ]_ C  e.  CC  <->  A. z  e.  ( X  X.  Y )
[_ (  x.  `  z )  /  i ]_ C  e.  CC )
74 df-ima 4848 . . . . . . . . . 10  |-  (  x.  " ( X  X.  Y ) )  =  ran  (  x.  |`  ( X  X.  Y ) )
75 f1ofo 5643 . . . . . . . . . . 11  |-  ( (  x.  |`  ( X  X.  Y ) ) : ( X  X.  Y
)
-1-1-onto-> Z  ->  (  x.  |`  ( X  X.  Y ) ) : ( X  X.  Y ) -onto-> Z )
76 forn 5618 . . . . . . . . . . 11  |-  ( (  x.  |`  ( X  X.  Y ) ) : ( X  X.  Y
) -onto-> Z  ->  ran  (  x.  |`  ( X  X.  Y ) )  =  Z )
7752, 75, 763syl 20 . . . . . . . . . 10  |-  ( ph  ->  ran  (  x.  |`  ( X  X.  Y ) )  =  Z )
7874, 77syl5eq 2482 . . . . . . . . 9  |-  ( ph  ->  (  x.  " ( X  X.  Y ) )  =  Z )
7978raleqdv 2918 . . . . . . . 8  |-  ( ph  ->  ( A. w  e.  (  x.  " ( X  X.  Y ) )
[_ w  /  i ]_ C  e.  CC  <->  A. w  e.  Z  [_ w  /  i ]_ C  e.  CC ) )
8073, 79syl5bbr 259 . . . . . . 7  |-  ( ph  ->  ( A. z  e.  ( X  X.  Y
) [_ (  x.  `  z )  /  i ]_ C  e.  CC  <->  A. w  e.  Z  [_ w  /  i ]_ C  e.  CC ) )
8158, 80mpbid 210 . . . . . 6  |-  ( ph  ->  A. w  e.  Z  [_ w  /  i ]_ C  e.  CC )
8281r19.21bi 2809 . . . . 5  |-  ( (
ph  /\  w  e.  Z )  ->  [_ w  /  i ]_ C  e.  CC )
8347, 49, 52, 54, 82fsumf1o 13192 . . . 4  |-  ( ph  -> 
sum_ w  e.  Z  [_ w  /  i ]_ C  =  sum_ z  e.  ( X  X.  Y
) [_ (  x.  `  z )  /  i ]_ C )
8446, 83syl5eq 2482 . . 3  |-  ( ph  -> 
sum_ i  e.  Z  C  =  sum_ z  e.  ( X  X.  Y
) [_ (  x.  `  z )  /  i ]_ C )
8542, 84eqtr4d 2473 . 2  |-  ( ph  -> 
sum_ j  e.  X  sum_ k  e.  Y  D  =  sum_ i  e.  Z  C )
8620, 28, 853eqtrd 2474 1  |-  ( ph  ->  ( sum_ j  e.  X  A  x.  sum_ k  e.  Y  B )  = 
sum_ i  e.  Z  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2710   {crab 2714   [_csb 3283    C_ wss 3323   <.cop 3878   class class class wbr 4287    X. cxp 4833   ran crn 4836    |` cres 4837   "cima 4838    Fn wfn 5408   -->wf 5409   -onto->wfo 5411   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6086   Fincfn 7302   CCcc 9272   1c1 9275    x. cmul 9279   NNcn 10314   ...cfz 11429   sum_csu 13155    || cdivides 13527    gcd cgcd 13682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-oi 7716  df-card 8101  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-rp 10984  df-fz 11430  df-fzo 11541  df-fl 11634  df-mod 11701  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-clim 12958  df-sum 13156  df-dvds 13528  df-gcd 13683
This theorem is referenced by:  sgmmul  22520  dchrisum0fmul  22735
  Copyright terms: Public domain W3C validator