Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodcnlem Structured version   Visualization version   GIF version

Theorem fprodcnlem 38666
 Description: A finite product of functions to complex numbers from a common topological space is continuous. Induction step. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
fprodcnlem.1 𝑘𝜑
fprodcnlem.k 𝐾 = (TopOpen‘ℂfld)
fprodcnlem.j (𝜑𝐽 ∈ (TopOn‘𝑋))
fprodcnlem.a (𝜑𝐴 ∈ Fin)
fprodcnlem.b ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
fprodcnlem.z (𝜑𝑍𝐴)
fprodcnlem.w (𝜑𝑊 ∈ (𝐴𝑍))
fprodcnlem.p (𝜑 → (𝑥𝑋 ↦ ∏𝑘𝑍 𝐵) ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
fprodcnlem (𝜑 → (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐽,𝑥   𝑘,𝐾,𝑥   𝑘,𝑊,𝑥   𝑘,𝑋,𝑥   𝑘,𝑍   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑥)   𝐵(𝑥,𝑘)   𝑍(𝑥)

Proof of Theorem fprodcnlem
StepHypRef Expression
1 fprodcnlem.1 . . . . 5 𝑘𝜑
2 nfv 1830 . . . . 5 𝑘 𝑥𝑋
31, 2nfan 1816 . . . 4 𝑘(𝜑𝑥𝑋)
4 nfcsb1v 3515 . . . 4 𝑘𝑊 / 𝑘𝐵
5 fprodcnlem.a . . . . . 6 (𝜑𝐴 ∈ Fin)
6 fprodcnlem.z . . . . . 6 (𝜑𝑍𝐴)
75, 6ssfid 8068 . . . . 5 (𝜑𝑍 ∈ Fin)
87adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝑍 ∈ Fin)
9 fprodcnlem.w . . . . 5 (𝜑𝑊 ∈ (𝐴𝑍))
109adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝑊 ∈ (𝐴𝑍))
1110eldifbd 3553 . . . 4 ((𝜑𝑥𝑋) → ¬ 𝑊𝑍)
126sselda 3568 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘𝐴)
1312adantlr 747 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑘𝑍) → 𝑘𝐴)
14 fprodcnlem.j . . . . . . . . . 10 (𝜑𝐽 ∈ (TopOn‘𝑋))
1514adantr 480 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐽 ∈ (TopOn‘𝑋))
16 fprodcnlem.k . . . . . . . . . . 11 𝐾 = (TopOpen‘ℂfld)
1716cnfldtopon 22396 . . . . . . . . . 10 𝐾 ∈ (TopOn‘ℂ)
1817a1i 11 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐾 ∈ (TopOn‘ℂ))
19 fprodcnlem.b . . . . . . . . 9 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
20 cnf2 20863 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐵):𝑋⟶ℂ)
2115, 18, 19, 20syl3anc 1318 . . . . . . . 8 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵):𝑋⟶ℂ)
22 eqid 2610 . . . . . . . . 9 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
2322fmpt 6289 . . . . . . . 8 (∀𝑥𝑋 𝐵 ∈ ℂ ↔ (𝑥𝑋𝐵):𝑋⟶ℂ)
2421, 23sylibr 223 . . . . . . 7 ((𝜑𝑘𝐴) → ∀𝑥𝑋 𝐵 ∈ ℂ)
2524adantlr 747 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → ∀𝑥𝑋 𝐵 ∈ ℂ)
26 simplr 788 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝑥𝑋)
27 rspa 2914 . . . . . 6 ((∀𝑥𝑋 𝐵 ∈ ℂ ∧ 𝑥𝑋) → 𝐵 ∈ ℂ)
2825, 26, 27syl2anc 691 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
2913, 28syldan 486 . . . 4 (((𝜑𝑥𝑋) ∧ 𝑘𝑍) → 𝐵 ∈ ℂ)
30 csbeq1a 3508 . . . 4 (𝑘 = 𝑊𝐵 = 𝑊 / 𝑘𝐵)
3110eldifad 3552 . . . . 5 ((𝜑𝑥𝑋) → 𝑊𝐴)
32 simpr 476 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑊𝐴) → 𝑊𝐴)
33 nfcv 2751 . . . . . . 7 𝑘𝑊
34 nfv 1830 . . . . . . . . 9 𝑘 𝑊𝐴
353, 34nfan 1816 . . . . . . . 8 𝑘((𝜑𝑥𝑋) ∧ 𝑊𝐴)
364nfel1 2765 . . . . . . . 8 𝑘𝑊 / 𝑘𝐵 ∈ ℂ
3735, 36nfim 1813 . . . . . . 7 𝑘(((𝜑𝑥𝑋) ∧ 𝑊𝐴) → 𝑊 / 𝑘𝐵 ∈ ℂ)
38 eleq1 2676 . . . . . . . . 9 (𝑘 = 𝑊 → (𝑘𝐴𝑊𝐴))
3938anbi2d 736 . . . . . . . 8 (𝑘 = 𝑊 → (((𝜑𝑥𝑋) ∧ 𝑘𝐴) ↔ ((𝜑𝑥𝑋) ∧ 𝑊𝐴)))
4030eleq1d 2672 . . . . . . . 8 (𝑘 = 𝑊 → (𝐵 ∈ ℂ ↔ 𝑊 / 𝑘𝐵 ∈ ℂ))
4139, 40imbi12d 333 . . . . . . 7 (𝑘 = 𝑊 → ((((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ) ↔ (((𝜑𝑥𝑋) ∧ 𝑊𝐴) → 𝑊 / 𝑘𝐵 ∈ ℂ)))
4233, 37, 41, 28vtoclgf 3237 . . . . . 6 (𝑊𝐴 → (((𝜑𝑥𝑋) ∧ 𝑊𝐴) → 𝑊 / 𝑘𝐵 ∈ ℂ))
4332, 42mpcom 37 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑊𝐴) → 𝑊 / 𝑘𝐵 ∈ ℂ)
4431, 43mpdan 699 . . . 4 ((𝜑𝑥𝑋) → 𝑊 / 𝑘𝐵 ∈ ℂ)
453, 4, 8, 10, 11, 29, 30, 44fprodsplitsn 14559 . . 3 ((𝜑𝑥𝑋) → ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵 = (∏𝑘𝑍 𝐵 · 𝑊 / 𝑘𝐵))
4645mpteq2dva 4672 . 2 (𝜑 → (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) = (𝑥𝑋 ↦ (∏𝑘𝑍 𝐵 · 𝑊 / 𝑘𝐵)))
47 fprodcnlem.p . . 3 (𝜑 → (𝑥𝑋 ↦ ∏𝑘𝑍 𝐵) ∈ (𝐽 Cn 𝐾))
489eldifad 3552 . . . 4 (𝜑𝑊𝐴)
491, 34nfan 1816 . . . . . . 7 𝑘(𝜑𝑊𝐴)
50 nfcv 2751 . . . . . . . . 9 𝑘𝑋
5150, 4nfmpt 4674 . . . . . . . 8 𝑘(𝑥𝑋𝑊 / 𝑘𝐵)
52 nfcv 2751 . . . . . . . 8 𝑘(𝐽 Cn 𝐾)
5351, 52nfel 2763 . . . . . . 7 𝑘(𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)
5449, 53nfim 1813 . . . . . 6 𝑘((𝜑𝑊𝐴) → (𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾))
5538anbi2d 736 . . . . . . 7 (𝑘 = 𝑊 → ((𝜑𝑘𝐴) ↔ (𝜑𝑊𝐴)))
5630mpteq2dv 4673 . . . . . . . 8 (𝑘 = 𝑊 → (𝑥𝑋𝐵) = (𝑥𝑋𝑊 / 𝑘𝐵))
5756eleq1d 2672 . . . . . . 7 (𝑘 = 𝑊 → ((𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)))
5855, 57imbi12d 333 . . . . . 6 (𝑘 = 𝑊 → (((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾)) ↔ ((𝜑𝑊𝐴) → (𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾))))
5919idi 2 . . . . . 6 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
6033, 54, 58, 59vtoclgf 3237 . . . . 5 (𝑊𝐴 → ((𝜑𝑊𝐴) → (𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)))
6160anabsi7 856 . . . 4 ((𝜑𝑊𝐴) → (𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾))
6248, 61mpdan 699 . . 3 (𝜑 → (𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾))
6316mulcn 22478 . . . 4 · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
6463a1i 11 . . 3 (𝜑 → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
6514, 47, 62, 64cnmpt12f 21279 . 2 (𝜑 → (𝑥𝑋 ↦ (∏𝑘𝑍 𝐵 · 𝑊 / 𝑘𝐵)) ∈ (𝐽 Cn 𝐾))
6646, 65eqeltrd 2688 1 (𝜑 → (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) ∈ (𝐽 Cn 𝐾))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475  Ⅎwnf 1699   ∈ wcel 1977  ∀wral 2896  ⦋csb 3499   ∖ cdif 3537   ∪ cun 3538   ⊆ wss 3540  {csn 4125   ↦ cmpt 4643  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  Fincfn 7841  ℂcc 9813   · cmul 9820  ∏cprod 14474  TopOpenctopn 15905  ℂfldccnfld 19567  TopOnctopon 20518   Cn ccn 20838   ×t ctx 21173 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-prod 14475  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-cnp 20842  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937 This theorem is referenced by:  fprodcn  38667
 Copyright terms: Public domain W3C validator