MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprod2dlem Structured version   Visualization version   GIF version

Theorem fprod2dlem 14549
Description: Lemma for fprod2d 14550- induction step. (Contributed by Scott Fenton, 30-Jan-2018.)
Hypotheses
Ref Expression
fprod2d.1 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
fprod2d.2 (𝜑𝐴 ∈ Fin)
fprod2d.3 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
fprod2d.4 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
fprod2d.5 (𝜑 → ¬ 𝑦𝑥)
fprod2d.6 (𝜑 → (𝑥 ∪ {𝑦}) ⊆ 𝐴)
fprod2d.7 (𝜓 ↔ ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)
Assertion
Ref Expression
fprod2dlem ((𝜑𝜓) → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑘,𝑧   𝑧,𝐶   𝐷,𝑗,𝑘   𝜑,𝑗   𝑥,𝑗   𝑦,𝑗,𝑧   𝜑,𝑘   𝑥,𝑘   𝑦,𝑘,𝑧   𝜑,𝑧   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑧,𝑗,𝑘)   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑗)   𝐶(𝑥,𝑦,𝑗,𝑘)   𝐷(𝑥,𝑦,𝑧)

Proof of Theorem fprod2dlem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simpr 476 . . . 4 ((𝜑𝜓) → 𝜓)
2 fprod2d.7 . . . 4 (𝜓 ↔ ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)
31, 2sylib 207 . . 3 ((𝜑𝜓) → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)
4 nfcv 2751 . . . . . 6 𝑚𝑘𝐵 𝐶
5 nfcsb1v 3515 . . . . . . 7 𝑗𝑚 / 𝑗𝐵
6 nfcsb1v 3515 . . . . . . 7 𝑗𝑚 / 𝑗𝐶
75, 6nfcprod 14480 . . . . . 6 𝑗𝑘 𝑚 / 𝑗𝐵𝑚 / 𝑗𝐶
8 csbeq1a 3508 . . . . . . 7 (𝑗 = 𝑚𝐵 = 𝑚 / 𝑗𝐵)
9 csbeq1a 3508 . . . . . . . 8 (𝑗 = 𝑚𝐶 = 𝑚 / 𝑗𝐶)
109adantr 480 . . . . . . 7 ((𝑗 = 𝑚𝑘𝐵) → 𝐶 = 𝑚 / 𝑗𝐶)
118, 10prodeq12dv 14495 . . . . . 6 (𝑗 = 𝑚 → ∏𝑘𝐵 𝐶 = ∏𝑘 𝑚 / 𝑗𝐵𝑚 / 𝑗𝐶)
124, 7, 11cbvprodi 14486 . . . . 5 𝑗 ∈ {𝑦}∏𝑘𝐵 𝐶 = ∏𝑚 ∈ {𝑦}∏𝑘 𝑚 / 𝑗𝐵𝑚 / 𝑗𝐶
13 fprod2d.6 . . . . . . . . 9 (𝜑 → (𝑥 ∪ {𝑦}) ⊆ 𝐴)
1413unssbd 3753 . . . . . . . 8 (𝜑 → {𝑦} ⊆ 𝐴)
15 vex 3176 . . . . . . . . 9 𝑦 ∈ V
1615snss 4259 . . . . . . . 8 (𝑦𝐴 ↔ {𝑦} ⊆ 𝐴)
1714, 16sylibr 223 . . . . . . 7 (𝜑𝑦𝐴)
18 fprod2d.3 . . . . . . . . . 10 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
1918ralrimiva 2949 . . . . . . . . 9 (𝜑 → ∀𝑗𝐴 𝐵 ∈ Fin)
20 nfcsb1v 3515 . . . . . . . . . . 11 𝑗𝑦 / 𝑗𝐵
2120nfel1 2765 . . . . . . . . . 10 𝑗𝑦 / 𝑗𝐵 ∈ Fin
22 csbeq1a 3508 . . . . . . . . . . 11 (𝑗 = 𝑦𝐵 = 𝑦 / 𝑗𝐵)
2322eleq1d 2672 . . . . . . . . . 10 (𝑗 = 𝑦 → (𝐵 ∈ Fin ↔ 𝑦 / 𝑗𝐵 ∈ Fin))
2421, 23rspc 3276 . . . . . . . . 9 (𝑦𝐴 → (∀𝑗𝐴 𝐵 ∈ Fin → 𝑦 / 𝑗𝐵 ∈ Fin))
2517, 19, 24sylc 63 . . . . . . . 8 (𝜑𝑦 / 𝑗𝐵 ∈ Fin)
26 fprod2d.4 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
2726ralrimivva 2954 . . . . . . . . . 10 (𝜑 → ∀𝑗𝐴𝑘𝐵 𝐶 ∈ ℂ)
28 nfcsb1v 3515 . . . . . . . . . . . . 13 𝑗𝑦 / 𝑗𝐶
2928nfel1 2765 . . . . . . . . . . . 12 𝑗𝑦 / 𝑗𝐶 ∈ ℂ
3020, 29nfral 2929 . . . . . . . . . . 11 𝑗𝑘 𝑦 / 𝑗𝐵𝑦 / 𝑗𝐶 ∈ ℂ
31 csbeq1a 3508 . . . . . . . . . . . . 13 (𝑗 = 𝑦𝐶 = 𝑦 / 𝑗𝐶)
3231eleq1d 2672 . . . . . . . . . . . 12 (𝑗 = 𝑦 → (𝐶 ∈ ℂ ↔ 𝑦 / 𝑗𝐶 ∈ ℂ))
3322, 32raleqbidv 3129 . . . . . . . . . . 11 (𝑗 = 𝑦 → (∀𝑘𝐵 𝐶 ∈ ℂ ↔ ∀𝑘 𝑦 / 𝑗𝐵𝑦 / 𝑗𝐶 ∈ ℂ))
3430, 33rspc 3276 . . . . . . . . . 10 (𝑦𝐴 → (∀𝑗𝐴𝑘𝐵 𝐶 ∈ ℂ → ∀𝑘 𝑦 / 𝑗𝐵𝑦 / 𝑗𝐶 ∈ ℂ))
3517, 27, 34sylc 63 . . . . . . . . 9 (𝜑 → ∀𝑘 𝑦 / 𝑗𝐵𝑦 / 𝑗𝐶 ∈ ℂ)
3635r19.21bi 2916 . . . . . . . 8 ((𝜑𝑘𝑦 / 𝑗𝐵) → 𝑦 / 𝑗𝐶 ∈ ℂ)
3725, 36fprodcl 14521 . . . . . . 7 (𝜑 → ∏𝑘 𝑦 / 𝑗𝐵𝑦 / 𝑗𝐶 ∈ ℂ)
38 csbeq1 3502 . . . . . . . . 9 (𝑚 = 𝑦𝑚 / 𝑗𝐵 = 𝑦 / 𝑗𝐵)
39 csbeq1 3502 . . . . . . . . . 10 (𝑚 = 𝑦𝑚 / 𝑗𝐶 = 𝑦 / 𝑗𝐶)
4039adantr 480 . . . . . . . . 9 ((𝑚 = 𝑦𝑘𝑚 / 𝑗𝐵) → 𝑚 / 𝑗𝐶 = 𝑦 / 𝑗𝐶)
4138, 40prodeq12dv 14495 . . . . . . . 8 (𝑚 = 𝑦 → ∏𝑘 𝑚 / 𝑗𝐵𝑚 / 𝑗𝐶 = ∏𝑘 𝑦 / 𝑗𝐵𝑦 / 𝑗𝐶)
4241prodsn 14531 . . . . . . 7 ((𝑦𝐴 ∧ ∏𝑘 𝑦 / 𝑗𝐵𝑦 / 𝑗𝐶 ∈ ℂ) → ∏𝑚 ∈ {𝑦}∏𝑘 𝑚 / 𝑗𝐵𝑚 / 𝑗𝐶 = ∏𝑘 𝑦 / 𝑗𝐵𝑦 / 𝑗𝐶)
4317, 37, 42syl2anc 691 . . . . . 6 (𝜑 → ∏𝑚 ∈ {𝑦}∏𝑘 𝑚 / 𝑗𝐵𝑚 / 𝑗𝐶 = ∏𝑘 𝑦 / 𝑗𝐵𝑦 / 𝑗𝐶)
44 nfcv 2751 . . . . . . . 8 𝑚𝑦 / 𝑗𝐶
45 nfcsb1v 3515 . . . . . . . 8 𝑘𝑚 / 𝑘𝑦 / 𝑗𝐶
46 csbeq1a 3508 . . . . . . . 8 (𝑘 = 𝑚𝑦 / 𝑗𝐶 = 𝑚 / 𝑘𝑦 / 𝑗𝐶)
4744, 45, 46cbvprodi 14486 . . . . . . 7 𝑘 𝑦 / 𝑗𝐵𝑦 / 𝑗𝐶 = ∏𝑚 𝑦 / 𝑗𝐵𝑚 / 𝑘𝑦 / 𝑗𝐶
48 csbeq1 3502 . . . . . . . . 9 (𝑚 = (2nd𝑧) → 𝑚 / 𝑘𝑦 / 𝑗𝐶 = (2nd𝑧) / 𝑘𝑦 / 𝑗𝐶)
49 snfi 7923 . . . . . . . . . 10 {𝑦} ∈ Fin
50 xpfi 8116 . . . . . . . . . 10 (({𝑦} ∈ Fin ∧ 𝑦 / 𝑗𝐵 ∈ Fin) → ({𝑦} × 𝑦 / 𝑗𝐵) ∈ Fin)
5149, 25, 50sylancr 694 . . . . . . . . 9 (𝜑 → ({𝑦} × 𝑦 / 𝑗𝐵) ∈ Fin)
52 2ndconst 7153 . . . . . . . . . 10 (𝑦𝐴 → (2nd ↾ ({𝑦} × 𝑦 / 𝑗𝐵)):({𝑦} × 𝑦 / 𝑗𝐵)–1-1-onto𝑦 / 𝑗𝐵)
5317, 52syl 17 . . . . . . . . 9 (𝜑 → (2nd ↾ ({𝑦} × 𝑦 / 𝑗𝐵)):({𝑦} × 𝑦 / 𝑗𝐵)–1-1-onto𝑦 / 𝑗𝐵)
54 fvres 6117 . . . . . . . . . 10 (𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵) → ((2nd ↾ ({𝑦} × 𝑦 / 𝑗𝐵))‘𝑧) = (2nd𝑧))
5554adantl 481 . . . . . . . . 9 ((𝜑𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)) → ((2nd ↾ ({𝑦} × 𝑦 / 𝑗𝐵))‘𝑧) = (2nd𝑧))
5645nfel1 2765 . . . . . . . . . . 11 𝑘𝑚 / 𝑘𝑦 / 𝑗𝐶 ∈ ℂ
5746eleq1d 2672 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝑦 / 𝑗𝐶 ∈ ℂ ↔ 𝑚 / 𝑘𝑦 / 𝑗𝐶 ∈ ℂ))
5856, 57rspc 3276 . . . . . . . . . 10 (𝑚𝑦 / 𝑗𝐵 → (∀𝑘 𝑦 / 𝑗𝐵𝑦 / 𝑗𝐶 ∈ ℂ → 𝑚 / 𝑘𝑦 / 𝑗𝐶 ∈ ℂ))
5935, 58mpan9 485 . . . . . . . . 9 ((𝜑𝑚𝑦 / 𝑗𝐵) → 𝑚 / 𝑘𝑦 / 𝑗𝐶 ∈ ℂ)
6048, 51, 53, 55, 59fprodf1o 14515 . . . . . . . 8 (𝜑 → ∏𝑚 𝑦 / 𝑗𝐵𝑚 / 𝑘𝑦 / 𝑗𝐶 = ∏𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)(2nd𝑧) / 𝑘𝑦 / 𝑗𝐶)
61 elxp 5055 . . . . . . . . . . . 12 (𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵) ↔ ∃𝑚𝑘(𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑦} ∧ 𝑘𝑦 / 𝑗𝐵)))
62 nfv 1830 . . . . . . . . . . . . . . 15 𝑗 𝑧 = ⟨𝑚, 𝑘
63 nfv 1830 . . . . . . . . . . . . . . . 16 𝑗 𝑚 ∈ {𝑦}
6420nfcri 2745 . . . . . . . . . . . . . . . 16 𝑗 𝑘𝑦 / 𝑗𝐵
6563, 64nfan 1816 . . . . . . . . . . . . . . 15 𝑗(𝑚 ∈ {𝑦} ∧ 𝑘𝑦 / 𝑗𝐵)
6662, 65nfan 1816 . . . . . . . . . . . . . 14 𝑗(𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑦} ∧ 𝑘𝑦 / 𝑗𝐵))
6766nfex 2140 . . . . . . . . . . . . 13 𝑗𝑘(𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑦} ∧ 𝑘𝑦 / 𝑗𝐵))
68 nfv 1830 . . . . . . . . . . . . 13 𝑚𝑘(𝑧 = ⟨𝑗, 𝑘⟩ ∧ (𝑗 = 𝑦𝑘𝐵))
69 opeq1 4340 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑗 → ⟨𝑚, 𝑘⟩ = ⟨𝑗, 𝑘⟩)
7069eqeq2d 2620 . . . . . . . . . . . . . . 15 (𝑚 = 𝑗 → (𝑧 = ⟨𝑚, 𝑘⟩ ↔ 𝑧 = ⟨𝑗, 𝑘⟩))
71 eleq1 2676 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑗 → (𝑚 ∈ {𝑦} ↔ 𝑗 ∈ {𝑦}))
72 velsn 4141 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ {𝑦} ↔ 𝑗 = 𝑦)
7371, 72syl6bb 275 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑗 → (𝑚 ∈ {𝑦} ↔ 𝑗 = 𝑦))
7473anbi1d 737 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑗 → ((𝑚 ∈ {𝑦} ∧ 𝑘𝑦 / 𝑗𝐵) ↔ (𝑗 = 𝑦𝑘𝑦 / 𝑗𝐵)))
7522eleq2d 2673 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑦 → (𝑘𝐵𝑘𝑦 / 𝑗𝐵))
7675pm5.32i 667 . . . . . . . . . . . . . . . 16 ((𝑗 = 𝑦𝑘𝐵) ↔ (𝑗 = 𝑦𝑘𝑦 / 𝑗𝐵))
7774, 76syl6bbr 277 . . . . . . . . . . . . . . 15 (𝑚 = 𝑗 → ((𝑚 ∈ {𝑦} ∧ 𝑘𝑦 / 𝑗𝐵) ↔ (𝑗 = 𝑦𝑘𝐵)))
7870, 77anbi12d 743 . . . . . . . . . . . . . 14 (𝑚 = 𝑗 → ((𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑦} ∧ 𝑘𝑦 / 𝑗𝐵)) ↔ (𝑧 = ⟨𝑗, 𝑘⟩ ∧ (𝑗 = 𝑦𝑘𝐵))))
7978exbidv 1837 . . . . . . . . . . . . 13 (𝑚 = 𝑗 → (∃𝑘(𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑦} ∧ 𝑘𝑦 / 𝑗𝐵)) ↔ ∃𝑘(𝑧 = ⟨𝑗, 𝑘⟩ ∧ (𝑗 = 𝑦𝑘𝐵))))
8067, 68, 79cbvex 2260 . . . . . . . . . . . 12 (∃𝑚𝑘(𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑦} ∧ 𝑘𝑦 / 𝑗𝐵)) ↔ ∃𝑗𝑘(𝑧 = ⟨𝑗, 𝑘⟩ ∧ (𝑗 = 𝑦𝑘𝐵)))
8161, 80bitri 263 . . . . . . . . . . 11 (𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵) ↔ ∃𝑗𝑘(𝑧 = ⟨𝑗, 𝑘⟩ ∧ (𝑗 = 𝑦𝑘𝐵)))
82 nfv 1830 . . . . . . . . . . . 12 𝑗𝜑
83 nfcv 2751 . . . . . . . . . . . . . 14 𝑗(2nd𝑧)
8483, 28nfcsb 3517 . . . . . . . . . . . . 13 𝑗(2nd𝑧) / 𝑘𝑦 / 𝑗𝐶
8584nfeq2 2766 . . . . . . . . . . . 12 𝑗 𝐷 = (2nd𝑧) / 𝑘𝑦 / 𝑗𝐶
86 nfv 1830 . . . . . . . . . . . . 13 𝑘𝜑
87 nfcsb1v 3515 . . . . . . . . . . . . . 14 𝑘(2nd𝑧) / 𝑘𝑦 / 𝑗𝐶
8887nfeq2 2766 . . . . . . . . . . . . 13 𝑘 𝐷 = (2nd𝑧) / 𝑘𝑦 / 𝑗𝐶
89 fprod2d.1 . . . . . . . . . . . . . . . 16 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
9089ad2antlr 759 . . . . . . . . . . . . . . 15 (((𝜑𝑧 = ⟨𝑗, 𝑘⟩) ∧ (𝑗 = 𝑦𝑘𝐵)) → 𝐷 = 𝐶)
9131ad2antrl 760 . . . . . . . . . . . . . . 15 (((𝜑𝑧 = ⟨𝑗, 𝑘⟩) ∧ (𝑗 = 𝑦𝑘𝐵)) → 𝐶 = 𝑦 / 𝑗𝐶)
92 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑧 = ⟨𝑗, 𝑘⟩ → (2nd𝑧) = (2nd ‘⟨𝑗, 𝑘⟩))
93 vex 3176 . . . . . . . . . . . . . . . . . . 19 𝑗 ∈ V
94 vex 3176 . . . . . . . . . . . . . . . . . . 19 𝑘 ∈ V
9593, 94op2nd 7068 . . . . . . . . . . . . . . . . . 18 (2nd ‘⟨𝑗, 𝑘⟩) = 𝑘
9692, 95syl6req 2661 . . . . . . . . . . . . . . . . 17 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝑘 = (2nd𝑧))
9796ad2antlr 759 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 = ⟨𝑗, 𝑘⟩) ∧ (𝑗 = 𝑦𝑘𝐵)) → 𝑘 = (2nd𝑧))
98 csbeq1a 3508 . . . . . . . . . . . . . . . 16 (𝑘 = (2nd𝑧) → 𝑦 / 𝑗𝐶 = (2nd𝑧) / 𝑘𝑦 / 𝑗𝐶)
9997, 98syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑧 = ⟨𝑗, 𝑘⟩) ∧ (𝑗 = 𝑦𝑘𝐵)) → 𝑦 / 𝑗𝐶 = (2nd𝑧) / 𝑘𝑦 / 𝑗𝐶)
10090, 91, 993eqtrd 2648 . . . . . . . . . . . . . 14 (((𝜑𝑧 = ⟨𝑗, 𝑘⟩) ∧ (𝑗 = 𝑦𝑘𝐵)) → 𝐷 = (2nd𝑧) / 𝑘𝑦 / 𝑗𝐶)
101100expl 646 . . . . . . . . . . . . 13 (𝜑 → ((𝑧 = ⟨𝑗, 𝑘⟩ ∧ (𝑗 = 𝑦𝑘𝐵)) → 𝐷 = (2nd𝑧) / 𝑘𝑦 / 𝑗𝐶))
10286, 88, 101exlimd 2074 . . . . . . . . . . . 12 (𝜑 → (∃𝑘(𝑧 = ⟨𝑗, 𝑘⟩ ∧ (𝑗 = 𝑦𝑘𝐵)) → 𝐷 = (2nd𝑧) / 𝑘𝑦 / 𝑗𝐶))
10382, 85, 102exlimd 2074 . . . . . . . . . . 11 (𝜑 → (∃𝑗𝑘(𝑧 = ⟨𝑗, 𝑘⟩ ∧ (𝑗 = 𝑦𝑘𝐵)) → 𝐷 = (2nd𝑧) / 𝑘𝑦 / 𝑗𝐶))
10481, 103syl5bi 231 . . . . . . . . . 10 (𝜑 → (𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵) → 𝐷 = (2nd𝑧) / 𝑘𝑦 / 𝑗𝐶))
105104imp 444 . . . . . . . . 9 ((𝜑𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)) → 𝐷 = (2nd𝑧) / 𝑘𝑦 / 𝑗𝐶)
106105prodeq2dv 14492 . . . . . . . 8 (𝜑 → ∏𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)𝐷 = ∏𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)(2nd𝑧) / 𝑘𝑦 / 𝑗𝐶)
10760, 106eqtr4d 2647 . . . . . . 7 (𝜑 → ∏𝑚 𝑦 / 𝑗𝐵𝑚 / 𝑘𝑦 / 𝑗𝐶 = ∏𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)𝐷)
10847, 107syl5eq 2656 . . . . . 6 (𝜑 → ∏𝑘 𝑦 / 𝑗𝐵𝑦 / 𝑗𝐶 = ∏𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)𝐷)
10943, 108eqtrd 2644 . . . . 5 (𝜑 → ∏𝑚 ∈ {𝑦}∏𝑘 𝑚 / 𝑗𝐵𝑚 / 𝑗𝐶 = ∏𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)𝐷)
11012, 109syl5eq 2656 . . . 4 (𝜑 → ∏𝑗 ∈ {𝑦}∏𝑘𝐵 𝐶 = ∏𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)𝐷)
111110adantr 480 . . 3 ((𝜑𝜓) → ∏𝑗 ∈ {𝑦}∏𝑘𝐵 𝐶 = ∏𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)𝐷)
1123, 111oveq12d 6567 . 2 ((𝜑𝜓) → (∏𝑗𝑥𝑘𝐵 𝐶 · ∏𝑗 ∈ {𝑦}∏𝑘𝐵 𝐶) = (∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷 · ∏𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)𝐷))
113 fprod2d.5 . . . . 5 (𝜑 → ¬ 𝑦𝑥)
114 disjsn 4192 . . . . 5 ((𝑥 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦𝑥)
115113, 114sylibr 223 . . . 4 (𝜑 → (𝑥 ∩ {𝑦}) = ∅)
116 eqidd 2611 . . . 4 (𝜑 → (𝑥 ∪ {𝑦}) = (𝑥 ∪ {𝑦}))
117 fprod2d.2 . . . . 5 (𝜑𝐴 ∈ Fin)
118 ssfi 8065 . . . . 5 ((𝐴 ∈ Fin ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ∈ Fin)
119117, 13, 118syl2anc 691 . . . 4 (𝜑 → (𝑥 ∪ {𝑦}) ∈ Fin)
12013sselda 3568 . . . . 5 ((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) → 𝑗𝐴)
12126anassrs 678 . . . . . 6 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
12218, 121fprodcl 14521 . . . . 5 ((𝜑𝑗𝐴) → ∏𝑘𝐵 𝐶 ∈ ℂ)
123120, 122syldan 486 . . . 4 ((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) → ∏𝑘𝐵 𝐶 ∈ ℂ)
124115, 116, 119, 123fprodsplit 14535 . . 3 (𝜑 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = (∏𝑗𝑥𝑘𝐵 𝐶 · ∏𝑗 ∈ {𝑦}∏𝑘𝐵 𝐶))
125124adantr 480 . 2 ((𝜑𝜓) → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = (∏𝑗𝑥𝑘𝐵 𝐶 · ∏𝑗 ∈ {𝑦}∏𝑘𝐵 𝐶))
126 eliun 4460 . . . . . . . . . 10 (𝑧 𝑗𝑥 ({𝑗} × 𝐵) ↔ ∃𝑗𝑥 𝑧 ∈ ({𝑗} × 𝐵))
127 xp1st 7089 . . . . . . . . . . . . . 14 (𝑧 ∈ ({𝑗} × 𝐵) → (1st𝑧) ∈ {𝑗})
128 elsni 4142 . . . . . . . . . . . . . 14 ((1st𝑧) ∈ {𝑗} → (1st𝑧) = 𝑗)
129127, 128syl 17 . . . . . . . . . . . . 13 (𝑧 ∈ ({𝑗} × 𝐵) → (1st𝑧) = 𝑗)
130129eleq1d 2672 . . . . . . . . . . . 12 (𝑧 ∈ ({𝑗} × 𝐵) → ((1st𝑧) ∈ 𝑥𝑗𝑥))
131130biimparc 503 . . . . . . . . . . 11 ((𝑗𝑥𝑧 ∈ ({𝑗} × 𝐵)) → (1st𝑧) ∈ 𝑥)
132131rexlimiva 3010 . . . . . . . . . 10 (∃𝑗𝑥 𝑧 ∈ ({𝑗} × 𝐵) → (1st𝑧) ∈ 𝑥)
133126, 132sylbi 206 . . . . . . . . 9 (𝑧 𝑗𝑥 ({𝑗} × 𝐵) → (1st𝑧) ∈ 𝑥)
134 xp1st 7089 . . . . . . . . 9 (𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵) → (1st𝑧) ∈ {𝑦})
135133, 134anim12i 588 . . . . . . . 8 ((𝑧 𝑗𝑥 ({𝑗} × 𝐵) ∧ 𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)) → ((1st𝑧) ∈ 𝑥 ∧ (1st𝑧) ∈ {𝑦}))
136 elin 3758 . . . . . . . 8 (𝑧 ∈ ( 𝑗𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × 𝑦 / 𝑗𝐵)) ↔ (𝑧 𝑗𝑥 ({𝑗} × 𝐵) ∧ 𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)))
137 elin 3758 . . . . . . . 8 ((1st𝑧) ∈ (𝑥 ∩ {𝑦}) ↔ ((1st𝑧) ∈ 𝑥 ∧ (1st𝑧) ∈ {𝑦}))
138135, 136, 1373imtr4i 280 . . . . . . 7 (𝑧 ∈ ( 𝑗𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × 𝑦 / 𝑗𝐵)) → (1st𝑧) ∈ (𝑥 ∩ {𝑦}))
139115eleq2d 2673 . . . . . . . 8 (𝜑 → ((1st𝑧) ∈ (𝑥 ∩ {𝑦}) ↔ (1st𝑧) ∈ ∅))
140 noel 3878 . . . . . . . . 9 ¬ (1st𝑧) ∈ ∅
141140pm2.21i 115 . . . . . . . 8 ((1st𝑧) ∈ ∅ → 𝑧 ∈ ∅)
142139, 141syl6bi 242 . . . . . . 7 (𝜑 → ((1st𝑧) ∈ (𝑥 ∩ {𝑦}) → 𝑧 ∈ ∅))
143138, 142syl5 33 . . . . . 6 (𝜑 → (𝑧 ∈ ( 𝑗𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × 𝑦 / 𝑗𝐵)) → 𝑧 ∈ ∅))
144143ssrdv 3574 . . . . 5 (𝜑 → ( 𝑗𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × 𝑦 / 𝑗𝐵)) ⊆ ∅)
145 ss0 3926 . . . . 5 (( 𝑗𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × 𝑦 / 𝑗𝐵)) ⊆ ∅ → ( 𝑗𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × 𝑦 / 𝑗𝐵)) = ∅)
146144, 145syl 17 . . . 4 (𝜑 → ( 𝑗𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × 𝑦 / 𝑗𝐵)) = ∅)
147 iunxun 4541 . . . . . 6 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) = ( 𝑗𝑥 ({𝑗} × 𝐵) ∪ 𝑗 ∈ {𝑦} ({𝑗} × 𝐵))
148 nfcv 2751 . . . . . . . . 9 𝑚({𝑗} × 𝐵)
149 nfcv 2751 . . . . . . . . . 10 𝑗{𝑚}
150149, 5nfxp 5066 . . . . . . . . 9 𝑗({𝑚} × 𝑚 / 𝑗𝐵)
151 sneq 4135 . . . . . . . . . 10 (𝑗 = 𝑚 → {𝑗} = {𝑚})
152151, 8xpeq12d 5064 . . . . . . . . 9 (𝑗 = 𝑚 → ({𝑗} × 𝐵) = ({𝑚} × 𝑚 / 𝑗𝐵))
153148, 150, 152cbviun 4493 . . . . . . . 8 𝑗 ∈ {𝑦} ({𝑗} × 𝐵) = 𝑚 ∈ {𝑦} ({𝑚} × 𝑚 / 𝑗𝐵)
154 sneq 4135 . . . . . . . . . 10 (𝑚 = 𝑦 → {𝑚} = {𝑦})
155154, 38xpeq12d 5064 . . . . . . . . 9 (𝑚 = 𝑦 → ({𝑚} × 𝑚 / 𝑗𝐵) = ({𝑦} × 𝑦 / 𝑗𝐵))
15615, 155iunxsn 4539 . . . . . . . 8 𝑚 ∈ {𝑦} ({𝑚} × 𝑚 / 𝑗𝐵) = ({𝑦} × 𝑦 / 𝑗𝐵)
157153, 156eqtri 2632 . . . . . . 7 𝑗 ∈ {𝑦} ({𝑗} × 𝐵) = ({𝑦} × 𝑦 / 𝑗𝐵)
158157uneq2i 3726 . . . . . 6 ( 𝑗𝑥 ({𝑗} × 𝐵) ∪ 𝑗 ∈ {𝑦} ({𝑗} × 𝐵)) = ( 𝑗𝑥 ({𝑗} × 𝐵) ∪ ({𝑦} × 𝑦 / 𝑗𝐵))
159147, 158eqtri 2632 . . . . 5 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) = ( 𝑗𝑥 ({𝑗} × 𝐵) ∪ ({𝑦} × 𝑦 / 𝑗𝐵))
160159a1i 11 . . . 4 (𝜑 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) = ( 𝑗𝑥 ({𝑗} × 𝐵) ∪ ({𝑦} × 𝑦 / 𝑗𝐵)))
161 snfi 7923 . . . . . . 7 {𝑗} ∈ Fin
162120, 18syldan 486 . . . . . . 7 ((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) → 𝐵 ∈ Fin)
163 xpfi 8116 . . . . . . 7 (({𝑗} ∈ Fin ∧ 𝐵 ∈ Fin) → ({𝑗} × 𝐵) ∈ Fin)
164161, 162, 163sylancr 694 . . . . . 6 ((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) → ({𝑗} × 𝐵) ∈ Fin)
165164ralrimiva 2949 . . . . 5 (𝜑 → ∀𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) ∈ Fin)
166 iunfi 8137 . . . . 5 (((𝑥 ∪ {𝑦}) ∈ Fin ∧ ∀𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) ∈ Fin) → 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) ∈ Fin)
167119, 165, 166syl2anc 691 . . . 4 (𝜑 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) ∈ Fin)
168 eliun 4460 . . . . . 6 (𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) ↔ ∃𝑗 ∈ (𝑥 ∪ {𝑦})𝑧 ∈ ({𝑗} × 𝐵))
169 elxp 5055 . . . . . . . 8 (𝑧 ∈ ({𝑗} × 𝐵) ↔ ∃𝑚𝑘(𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵)))
170 simprl 790 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵))) → 𝑧 = ⟨𝑚, 𝑘⟩)
171 simprrl 800 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵))) → 𝑚 ∈ {𝑗})
172 elsni 4142 . . . . . . . . . . . . . . 15 (𝑚 ∈ {𝑗} → 𝑚 = 𝑗)
173171, 172syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵))) → 𝑚 = 𝑗)
174173opeq1d 4346 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵))) → ⟨𝑚, 𝑘⟩ = ⟨𝑗, 𝑘⟩)
175170, 174eqtrd 2644 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵))) → 𝑧 = ⟨𝑗, 𝑘⟩)
176175, 89syl 17 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵))) → 𝐷 = 𝐶)
177 simpll 786 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵))) → 𝜑)
178120adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵))) → 𝑗𝐴)
179 simprrr 801 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵))) → 𝑘𝐵)
180177, 178, 179, 26syl12anc 1316 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵))) → 𝐶 ∈ ℂ)
181176, 180eqeltrd 2688 . . . . . . . . . 10 (((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵))) → 𝐷 ∈ ℂ)
182181ex 449 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) → ((𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵)) → 𝐷 ∈ ℂ))
183182exlimdvv 1849 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) → (∃𝑚𝑘(𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵)) → 𝐷 ∈ ℂ))
184169, 183syl5bi 231 . . . . . . 7 ((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) → (𝑧 ∈ ({𝑗} × 𝐵) → 𝐷 ∈ ℂ))
185184rexlimdva 3013 . . . . . 6 (𝜑 → (∃𝑗 ∈ (𝑥 ∪ {𝑦})𝑧 ∈ ({𝑗} × 𝐵) → 𝐷 ∈ ℂ))
186168, 185syl5bi 231 . . . . 5 (𝜑 → (𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) → 𝐷 ∈ ℂ))
187186imp 444 . . . 4 ((𝜑𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)) → 𝐷 ∈ ℂ)
188146, 160, 167, 187fprodsplit 14535 . . 3 (𝜑 → ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷 = (∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷 · ∏𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)𝐷))
189188adantr 480 . 2 ((𝜑𝜓) → ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷 = (∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷 · ∏𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)𝐷))
190112, 125, 1893eqtr4d 2654 1 ((𝜑𝜓) → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wral 2896  wrex 2897  csb 3499  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125  cop 4131   ciun 4455   × cxp 5036  cres 5040  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  Fincfn 7841  cc 9813   · cmul 9820  cprod 14474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-prod 14475
This theorem is referenced by:  fprod2d  14550
  Copyright terms: Public domain W3C validator