MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodn0 Structured version   Visualization version   GIF version

Theorem fprodn0 14548
Description: A finite product of nonzero terms is nonzero. (Contributed by Scott Fenton, 15-Jan-2018.)
Hypotheses
Ref Expression
fprodn0.1 (𝜑𝐴 ∈ Fin)
fprodn0.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodn0.3 ((𝜑𝑘𝐴) → 𝐵 ≠ 0)
Assertion
Ref Expression
fprodn0 (𝜑 → ∏𝑘𝐴 𝐵 ≠ 0)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fprodn0
Dummy variables 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 14478 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
2 prod0 14512 . . . . 5 𝑘 ∈ ∅ 𝐵 = 1
31, 2syl6eq 2660 . . . 4 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = 1)
4 ax-1ne0 9884 . . . . 5 1 ≠ 0
54a1i 11 . . . 4 (𝐴 = ∅ → 1 ≠ 0)
63, 5eqnetrd 2849 . . 3 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 ≠ 0)
76a1i 11 . 2 (𝜑 → (𝐴 = ∅ → ∏𝑘𝐴 𝐵 ≠ 0))
8 prodfc 14514 . . . . . . 7 𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = ∏𝑘𝐴 𝐵
9 fveq2 6103 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
10 simprl 790 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (#‘𝐴) ∈ ℕ)
11 simprr 792 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)
12 fprodn0.2 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
13 eqid 2610 . . . . . . . . . . 11 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
1412, 13fmptd 6292 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
1514adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
1615ffvelrnda 6267 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
17 f1of 6050 . . . . . . . . . 10 (𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑓:(1...(#‘𝐴))⟶𝐴)
1811, 17syl 17 . . . . . . . . 9 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(#‘𝐴))⟶𝐴)
19 fvco3 6185 . . . . . . . . 9 ((𝑓:(1...(#‘𝐴))⟶𝐴𝑛 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
2018, 19sylan 487 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
219, 10, 11, 16, 20fprod 14510 . . . . . . 7 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(#‘𝐴)))
228, 21syl5eqr 2658 . . . . . 6 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 𝐵 = (seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(#‘𝐴)))
23 nnuz 11599 . . . . . . . 8 ℕ = (ℤ‘1)
2410, 23syl6eleq 2698 . . . . . . 7 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (#‘𝐴) ∈ (ℤ‘1))
25 fco 5971 . . . . . . . . 9 (((𝑘𝐴𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(#‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(#‘𝐴))⟶ℂ)
2615, 18, 25syl2anc 691 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(#‘𝐴))⟶ℂ)
2726ffvelrnda 6267 . . . . . . 7 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑚 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑚) ∈ ℂ)
28 fvco3 6185 . . . . . . . . 9 ((𝑓:(1...(#‘𝐴))⟶𝐴𝑚 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑚)))
2918, 28sylan 487 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑚 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑚)))
3017ffvelrnda 6267 . . . . . . . . . . 11 ((𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑚 ∈ (1...(#‘𝐴))) → (𝑓𝑚) ∈ 𝐴)
3130adantll 746 . . . . . . . . . 10 ((((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ 𝑚 ∈ (1...(#‘𝐴))) → (𝑓𝑚) ∈ 𝐴)
32 simpr 476 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝑚) ∈ 𝐴) → (𝑓𝑚) ∈ 𝐴)
33 nfcv 2751 . . . . . . . . . . . . . 14 𝑘(𝑓𝑚)
34 nfv 1830 . . . . . . . . . . . . . . 15 𝑘𝜑
35 nfcsb1v 3515 . . . . . . . . . . . . . . . 16 𝑘(𝑓𝑚) / 𝑘𝐵
3635nfel1 2765 . . . . . . . . . . . . . . 15 𝑘(𝑓𝑚) / 𝑘𝐵 ∈ ℂ
3734, 36nfim 1813 . . . . . . . . . . . . . 14 𝑘(𝜑(𝑓𝑚) / 𝑘𝐵 ∈ ℂ)
38 csbeq1a 3508 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑓𝑚) → 𝐵 = (𝑓𝑚) / 𝑘𝐵)
3938eleq1d 2672 . . . . . . . . . . . . . . 15 (𝑘 = (𝑓𝑚) → (𝐵 ∈ ℂ ↔ (𝑓𝑚) / 𝑘𝐵 ∈ ℂ))
4039imbi2d 329 . . . . . . . . . . . . . 14 (𝑘 = (𝑓𝑚) → ((𝜑𝐵 ∈ ℂ) ↔ (𝜑(𝑓𝑚) / 𝑘𝐵 ∈ ℂ)))
4112expcom 450 . . . . . . . . . . . . . 14 (𝑘𝐴 → (𝜑𝐵 ∈ ℂ))
4233, 37, 40, 41vtoclgaf 3244 . . . . . . . . . . . . 13 ((𝑓𝑚) ∈ 𝐴 → (𝜑(𝑓𝑚) / 𝑘𝐵 ∈ ℂ))
4342impcom 445 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝑚) ∈ 𝐴) → (𝑓𝑚) / 𝑘𝐵 ∈ ℂ)
4413fvmpts 6194 . . . . . . . . . . . 12 (((𝑓𝑚) ∈ 𝐴(𝑓𝑚) / 𝑘𝐵 ∈ ℂ) → ((𝑘𝐴𝐵)‘(𝑓𝑚)) = (𝑓𝑚) / 𝑘𝐵)
4532, 43, 44syl2anc 691 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝑚) ∈ 𝐴) → ((𝑘𝐴𝐵)‘(𝑓𝑚)) = (𝑓𝑚) / 𝑘𝐵)
46 nfcv 2751 . . . . . . . . . . . . . . 15 𝑘0
4735, 46nfne 2882 . . . . . . . . . . . . . 14 𝑘(𝑓𝑚) / 𝑘𝐵 ≠ 0
4834, 47nfim 1813 . . . . . . . . . . . . 13 𝑘(𝜑(𝑓𝑚) / 𝑘𝐵 ≠ 0)
4938neeq1d 2841 . . . . . . . . . . . . . 14 (𝑘 = (𝑓𝑚) → (𝐵 ≠ 0 ↔ (𝑓𝑚) / 𝑘𝐵 ≠ 0))
5049imbi2d 329 . . . . . . . . . . . . 13 (𝑘 = (𝑓𝑚) → ((𝜑𝐵 ≠ 0) ↔ (𝜑(𝑓𝑚) / 𝑘𝐵 ≠ 0)))
51 fprodn0.3 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐵 ≠ 0)
5251expcom 450 . . . . . . . . . . . . 13 (𝑘𝐴 → (𝜑𝐵 ≠ 0))
5333, 48, 50, 52vtoclgaf 3244 . . . . . . . . . . . 12 ((𝑓𝑚) ∈ 𝐴 → (𝜑(𝑓𝑚) / 𝑘𝐵 ≠ 0))
5453impcom 445 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝑚) ∈ 𝐴) → (𝑓𝑚) / 𝑘𝐵 ≠ 0)
5545, 54eqnetrd 2849 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝑚) ∈ 𝐴) → ((𝑘𝐴𝐵)‘(𝑓𝑚)) ≠ 0)
5631, 55sylan2 490 . . . . . . . . 9 ((𝜑 ∧ (((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ 𝑚 ∈ (1...(#‘𝐴)))) → ((𝑘𝐴𝐵)‘(𝑓𝑚)) ≠ 0)
5756anassrs 678 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑚 ∈ (1...(#‘𝐴))) → ((𝑘𝐴𝐵)‘(𝑓𝑚)) ≠ 0)
5829, 57eqnetrd 2849 . . . . . . 7 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑚 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑚) ≠ 0)
5924, 27, 58prodfn0 14465 . . . . . 6 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(#‘𝐴)) ≠ 0)
6022, 59eqnetrd 2849 . . . . 5 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 𝐵 ≠ 0)
6160expr 641 . . . 4 ((𝜑 ∧ (#‘𝐴) ∈ ℕ) → (𝑓:(1...(#‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 𝐵 ≠ 0))
6261exlimdv 1848 . . 3 ((𝜑 ∧ (#‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 𝐵 ≠ 0))
6362expimpd 627 . 2 (𝜑 → (((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 𝐵 ≠ 0))
64 fprodn0.1 . . 3 (𝜑𝐴 ∈ Fin)
65 fz1f1o 14288 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)))
6664, 65syl 17 . 2 (𝜑 → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)))
677, 63, 66mpjaod 395 1 (𝜑 → ∏𝑘𝐴 𝐵 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  csb 3499  c0 3874  cmpt 4643  ccom 5042  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  0cc0 9815  1c1 9816   · cmul 9820  cn 10897  cuz 11563  ...cfz 12197  seqcseq 12663  #chash 12979  cprod 14474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-prod 14475
This theorem is referenced by:  fallfacval4  14613  absprodnn  15169  bcc0  37561  mccllem  38664  dvnprodlem2  38837  etransclem15  39142  etransclem25  39152  etransclem31  39158  etransclem32  39159  etransclem33  39160  etransclem34  39161
  Copyright terms: Public domain W3C validator