MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprod2d Structured version   Visualization version   GIF version

Theorem fprod2d 14550
Description: Write a double product as a product over a two-dimensional region. Compare fsum2d 14344. (Contributed by Scott Fenton, 30-Jan-2018.)
Hypotheses
Ref Expression
fprod2d.1 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
fprod2d.2 (𝜑𝐴 ∈ Fin)
fprod2d.3 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
fprod2d.4 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fprod2d (𝜑 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
Distinct variable groups:   𝐴,𝑗,𝑘,𝑧   𝐵,𝑘,𝑧   𝑧,𝐶   𝐷,𝑗,𝑘   𝜑,𝑗,𝑧,𝑘
Allowed substitution hints:   𝐵(𝑗)   𝐶(𝑗,𝑘)   𝐷(𝑧)

Proof of Theorem fprod2d
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3587 . 2 𝐴𝐴
2 fprod2d.2 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3589 . . . . . 6 (𝑤 = ∅ → (𝑤𝐴 ↔ ∅ ⊆ 𝐴))
4 prodeq1 14478 . . . . . . 7 (𝑤 = ∅ → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑗 ∈ ∅ ∏𝑘𝐵 𝐶)
5 iuneq1 4470 . . . . . . . . 9 (𝑤 = ∅ → 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗 ∈ ∅ ({𝑗} × 𝐵))
6 0iun 4513 . . . . . . . . 9 𝑗 ∈ ∅ ({𝑗} × 𝐵) = ∅
75, 6syl6eq 2660 . . . . . . . 8 (𝑤 = ∅ → 𝑗𝑤 ({𝑗} × 𝐵) = ∅)
87prodeq1d 14490 . . . . . . 7 (𝑤 = ∅ → ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = ∏𝑧 ∈ ∅ 𝐷)
94, 8eqeq12d 2625 . . . . . 6 (𝑤 = ∅ → (∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ ∏𝑗 ∈ ∅ ∏𝑘𝐵 𝐶 = ∏𝑧 ∈ ∅ 𝐷))
103, 9imbi12d 333 . . . . 5 (𝑤 = ∅ → ((𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (∅ ⊆ 𝐴 → ∏𝑗 ∈ ∅ ∏𝑘𝐵 𝐶 = ∏𝑧 ∈ ∅ 𝐷)))
1110imbi2d 329 . . . 4 (𝑤 = ∅ → ((𝜑 → (𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (∅ ⊆ 𝐴 → ∏𝑗 ∈ ∅ ∏𝑘𝐵 𝐶 = ∏𝑧 ∈ ∅ 𝐷))))
12 sseq1 3589 . . . . . 6 (𝑤 = 𝑥 → (𝑤𝐴𝑥𝐴))
13 prodeq1 14478 . . . . . . 7 (𝑤 = 𝑥 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑗𝑥𝑘𝐵 𝐶)
14 iuneq1 4470 . . . . . . . 8 (𝑤 = 𝑥 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗𝑥 ({𝑗} × 𝐵))
1514prodeq1d 14490 . . . . . . 7 (𝑤 = 𝑥 → ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)
1613, 15eqeq12d 2625 . . . . . 6 (𝑤 = 𝑥 → (∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))
1712, 16imbi12d 333 . . . . 5 (𝑤 = 𝑥 → ((𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)))
1817imbi2d 329 . . . 4 (𝑤 = 𝑥 → ((𝜑 → (𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))))
19 sseq1 3589 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → (𝑤𝐴 ↔ (𝑥 ∪ {𝑦}) ⊆ 𝐴))
20 prodeq1 14478 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶)
21 iuneq1 4470 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑦}) → 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵))
2221prodeq1d 14490 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
2320, 22eqeq12d 2625 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → (∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))
2419, 23imbi12d 333 . . . . 5 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
2524imbi2d 329 . . . 4 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝜑 → (𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
26 sseq1 3589 . . . . . 6 (𝑤 = 𝐴 → (𝑤𝐴𝐴𝐴))
27 prodeq1 14478 . . . . . . 7 (𝑤 = 𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑗𝐴𝑘𝐵 𝐶)
28 iuneq1 4470 . . . . . . . 8 (𝑤 = 𝐴 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵))
2928prodeq1d 14490 . . . . . . 7 (𝑤 = 𝐴 → ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
3027, 29eqeq12d 2625 . . . . . 6 (𝑤 = 𝐴 → (∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))
3126, 30imbi12d 333 . . . . 5 (𝑤 = 𝐴 → ((𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (𝐴𝐴 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)))
3231imbi2d 329 . . . 4 (𝑤 = 𝐴 → ((𝜑 → (𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (𝐴𝐴 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))))
33 prod0 14512 . . . . . 6 𝑗 ∈ ∅ ∏𝑘𝐵 𝐶 = 1
34 prod0 14512 . . . . . 6 𝑧 ∈ ∅ 𝐷 = 1
3533, 34eqtr4i 2635 . . . . 5 𝑗 ∈ ∅ ∏𝑘𝐵 𝐶 = ∏𝑧 ∈ ∅ 𝐷
36352a1i 12 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → ∏𝑗 ∈ ∅ ∏𝑘𝐵 𝐶 = ∏𝑧 ∈ ∅ 𝐷))
37 ssun1 3738 . . . . . . . . . 10 𝑥 ⊆ (𝑥 ∪ {𝑦})
38 sstr 3576 . . . . . . . . . 10 ((𝑥 ⊆ (𝑥 ∪ {𝑦}) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥𝐴)
3937, 38mpan 702 . . . . . . . . 9 ((𝑥 ∪ {𝑦}) ⊆ 𝐴𝑥𝐴)
4039imim1i 61 . . . . . . . 8 ((𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))
41 fprod2d.1 . . . . . . . . . . 11 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
422ad2antrr 758 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝐴 ∈ Fin)
43 fprod2d.3 . . . . . . . . . . . . 13 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
4443adantlr 747 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ 𝑗𝐴) → 𝐵 ∈ Fin)
4544adantlr 747 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑗𝐴) → 𝐵 ∈ Fin)
46 fprod2d.4 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
4746adantlr 747 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
4847adantlr 747 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
49 simplr 788 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ¬ 𝑦𝑥)
50 simpr 476 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ⊆ 𝐴)
51 biid 250 . . . . . . . . . . 11 (∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷 ↔ ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)
5241, 42, 45, 48, 49, 50, 51fprod2dlem 14549 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝑦𝑥) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
5352exp31 628 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑦𝑥) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5453a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑦𝑥) → (((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5540, 54syl5 33 . . . . . . 7 ((𝜑 ∧ ¬ 𝑦𝑥) → ((𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5655expcom 450 . . . . . 6 𝑦𝑥 → (𝜑 → ((𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
5756a2d 29 . . . . 5 𝑦𝑥 → ((𝜑 → (𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
5857adantl 481 . . . 4 ((𝑥 ∈ Fin ∧ ¬ 𝑦𝑥) → ((𝜑 → (𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
5911, 18, 25, 32, 36, 58findcard2s 8086 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)))
602, 59mpcom 37 . 2 (𝜑 → (𝐴𝐴 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))
611, 60mpi 20 1 (𝜑 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  cun 3538  wss 3540  c0 3874  {csn 4125  cop 4131   ciun 4455   × cxp 5036  Fincfn 7841  cc 9813  1c1 9816  cprod 14474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-prod 14475
This theorem is referenced by:  fprodxp  14551  fprodcom2  14553  fprodcom2OLD  14554
  Copyright terms: Public domain W3C validator