Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcprod Structured version   Visualization version   GIF version

Theorem nfcprod 14480
 Description: Bound-variable hypothesis builder for product: if 𝑥 is (effectively) not free in 𝐴 and 𝐵, it is not free in ∏𝑘 ∈ 𝐴𝐵. (Contributed by Scott Fenton, 1-Dec-2017.)
Hypotheses
Ref Expression
nfcprod.1 𝑥𝐴
nfcprod.2 𝑥𝐵
Assertion
Ref Expression
nfcprod 𝑥𝑘𝐴 𝐵
Distinct variable group:   𝑥,𝑘
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥,𝑘)

Proof of Theorem nfcprod
Dummy variables 𝑓 𝑚 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prod 14475 . 2 𝑘𝐴 𝐵 = (℩𝑦(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
2 nfcv 2751 . . . . 5 𝑥
3 nfcprod.1 . . . . . . 7 𝑥𝐴
4 nfcv 2751 . . . . . . 7 𝑥(ℤ𝑚)
53, 4nfss 3561 . . . . . 6 𝑥 𝐴 ⊆ (ℤ𝑚)
6 nfv 1830 . . . . . . . . 9 𝑥 𝑧 ≠ 0
7 nfcv 2751 . . . . . . . . . . 11 𝑥𝑛
8 nfcv 2751 . . . . . . . . . . 11 𝑥 ·
93nfcri 2745 . . . . . . . . . . . . 13 𝑥 𝑘𝐴
10 nfcprod.2 . . . . . . . . . . . . 13 𝑥𝐵
11 nfcv 2751 . . . . . . . . . . . . 13 𝑥1
129, 10, 11nfif 4065 . . . . . . . . . . . 12 𝑥if(𝑘𝐴, 𝐵, 1)
132, 12nfmpt 4674 . . . . . . . . . . 11 𝑥(𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
147, 8, 13nfseq 12673 . . . . . . . . . 10 𝑥seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)))
15 nfcv 2751 . . . . . . . . . 10 𝑥
16 nfcv 2751 . . . . . . . . . 10 𝑥𝑧
1714, 15, 16nfbr 4629 . . . . . . . . 9 𝑥seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧
186, 17nfan 1816 . . . . . . . 8 𝑥(𝑧 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧)
1918nfex 2140 . . . . . . 7 𝑥𝑧(𝑧 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧)
204, 19nfrex 2990 . . . . . 6 𝑥𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧)
21 nfcv 2751 . . . . . . . 8 𝑥𝑚
2221, 8, 13nfseq 12673 . . . . . . 7 𝑥seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)))
23 nfcv 2751 . . . . . . 7 𝑥𝑦
2422, 15, 23nfbr 4629 . . . . . 6 𝑥seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦
255, 20, 24nf3an 1819 . . . . 5 𝑥(𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
262, 25nfrex 2990 . . . 4 𝑥𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
27 nfcv 2751 . . . . 5 𝑥
28 nfcv 2751 . . . . . . . 8 𝑥𝑓
29 nfcv 2751 . . . . . . . 8 𝑥(1...𝑚)
3028, 29, 3nff1o 6048 . . . . . . 7 𝑥 𝑓:(1...𝑚)–1-1-onto𝐴
31 nfcv 2751 . . . . . . . . . . . 12 𝑥(𝑓𝑛)
3231, 10nfcsb 3517 . . . . . . . . . . 11 𝑥(𝑓𝑛) / 𝑘𝐵
3327, 32nfmpt 4674 . . . . . . . . . 10 𝑥(𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
3411, 8, 33nfseq 12673 . . . . . . . . 9 𝑥seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))
3534, 21nffv 6110 . . . . . . . 8 𝑥(seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
3635nfeq2 2766 . . . . . . 7 𝑥 𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
3730, 36nfan 1816 . . . . . 6 𝑥(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3837nfex 2140 . . . . 5 𝑥𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3927, 38nfrex 2990 . . . 4 𝑥𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
4026, 39nfor 1822 . . 3 𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
4140nfiota 5772 . 2 𝑥(℩𝑦(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
421, 41nfcxfr 2749 1 𝑥𝑘𝐴 𝐵
 Colors of variables: wff setvar class Syntax hints:   ∨ wo 382   ∧ wa 383   ∧ w3a 1031   = wceq 1475  ∃wex 1695   ∈ wcel 1977  Ⅎwnfc 2738   ≠ wne 2780  ∃wrex 2897  ⦋csb 3499   ⊆ wss 3540  ifcif 4036   class class class wbr 4583   ↦ cmpt 4643  ℩cio 5766  –1-1-onto→wf1o 5803  ‘cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   · cmul 9820  ℕcn 10897  ℤcz 11254  ℤ≥cuz 11563  ...cfz 12197  seqcseq 12663   ⇝ cli 14063  ∏cprod 14474 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-seq 12664  df-prod 14475 This theorem is referenced by:  fprod2dlem  14549  fprodcom2  14553  fprodcom2OLD  14554  fprodcn  38667  fprodcncf  38787
 Copyright terms: Public domain W3C validator