Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprod2dlem Structured version   Unicode version

Theorem fprod2dlem 27655
Description: Lemma for fprod2d 27656- induction step. (Contributed by Scott Fenton, 30-Jan-2018.)
Hypotheses
Ref Expression
fprod2d.1  |-  ( z  =  <. j ,  k
>.  ->  D  =  C )
fprod2d.2  |-  ( ph  ->  A  e.  Fin )
fprod2d.3  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
fprod2d.4  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
fprod2d.5  |-  ( ph  ->  -.  y  e.  x
)
fprod2d.6  |-  ( ph  ->  ( x  u.  {
y } )  C_  A )
fprod2d.7  |-  ( ps  <->  prod_
j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D )
Assertion
Ref Expression
fprod2dlem  |-  ( (
ph  /\  ps )  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D )
Distinct variable groups:    A, j,
k    B, k, z    z, C    D, j, k    ph, j    x, j    y, j, z    ph, k    x, k    y,
k, z    ph, z    x, z    y, z
Allowed substitution hints:    ph( x, y)    ps( x, y, z, j, k)    A( x, y, z)    B( x, y, j)    C( x, y, j, k)    D( x, y, z)

Proof of Theorem fprod2dlem
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 simpr 461 . . . 4  |-  ( (
ph  /\  ps )  ->  ps )
2 fprod2d.7 . . . 4  |-  ( ps  <->  prod_
j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D )
31, 2sylib 196 . . 3  |-  ( (
ph  /\  ps )  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )
4 nfcv 2616 . . . . . 6  |-  F/_ m prod_ k  e.  B  C
5 nfcsb1v 3414 . . . . . . 7  |-  F/_ j [_ m  /  j ]_ B
6 nfcsb1v 3414 . . . . . . 7  |-  F/_ j [_ m  /  j ]_ C
75, 6nfcprod 27588 . . . . . 6  |-  F/_ j prod_ k  e.  [_  m  /  j ]_ B [_ m  /  j ]_ C
8 csbeq1a 3407 . . . . . . 7  |-  ( j  =  m  ->  B  =  [_ m  /  j ]_ B )
9 csbeq1a 3407 . . . . . . . 8  |-  ( j  =  m  ->  C  =  [_ m  /  j ]_ C )
109adantr 465 . . . . . . 7  |-  ( ( j  =  m  /\  k  e.  B )  ->  C  =  [_ m  /  j ]_ C
)
118, 10prodeq12dv 27603 . . . . . 6  |-  ( j  =  m  ->  prod_ k  e.  B  C  = 
prod_ k  e.  [_  m  /  j ]_ B [_ m  /  j ]_ C )
124, 7, 11cbvprodi 27594 . . . . 5  |-  prod_ j  e.  { y } prod_ k  e.  B  C  = 
prod_ m  e.  { y } prod_ k  e.  [_  m  /  j ]_ B [_ m  /  j ]_ C
13 fprod2d.6 . . . . . . . . 9  |-  ( ph  ->  ( x  u.  {
y } )  C_  A )
1413unssbd 3645 . . . . . . . 8  |-  ( ph  ->  { y }  C_  A )
15 vex 3081 . . . . . . . . 9  |-  y  e. 
_V
1615snss 4110 . . . . . . . 8  |-  ( y  e.  A  <->  { y }  C_  A )
1714, 16sylibr 212 . . . . . . 7  |-  ( ph  ->  y  e.  A )
18 fprod2d.3 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
1918ralrimiva 2830 . . . . . . . . 9  |-  ( ph  ->  A. j  e.  A  B  e.  Fin )
20 nfcsb1v 3414 . . . . . . . . . . 11  |-  F/_ j [_ y  /  j ]_ B
2120nfel1 2632 . . . . . . . . . 10  |-  F/ j
[_ y  /  j ]_ B  e.  Fin
22 csbeq1a 3407 . . . . . . . . . . 11  |-  ( j  =  y  ->  B  =  [_ y  /  j ]_ B )
2322eleq1d 2523 . . . . . . . . . 10  |-  ( j  =  y  ->  ( B  e.  Fin  <->  [_ y  / 
j ]_ B  e.  Fin ) )
2421, 23rspc 3173 . . . . . . . . 9  |-  ( y  e.  A  ->  ( A. j  e.  A  B  e.  Fin  ->  [_ y  /  j ]_ B  e.  Fin ) )
2517, 19, 24sylc 60 . . . . . . . 8  |-  ( ph  ->  [_ y  /  j ]_ B  e.  Fin )
26 fprod2d.4 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
2726ralrimivva 2914 . . . . . . . . . 10  |-  ( ph  ->  A. j  e.  A  A. k  e.  B  C  e.  CC )
28 nfcsb1v 3414 . . . . . . . . . . . . 13  |-  F/_ j [_ y  /  j ]_ C
2928nfel1 2632 . . . . . . . . . . . 12  |-  F/ j
[_ y  /  j ]_ C  e.  CC
3020, 29nfral 2888 . . . . . . . . . . 11  |-  F/ j A. k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  e.  CC
31 csbeq1a 3407 . . . . . . . . . . . . 13  |-  ( j  =  y  ->  C  =  [_ y  /  j ]_ C )
3231eleq1d 2523 . . . . . . . . . . . 12  |-  ( j  =  y  ->  ( C  e.  CC  <->  [_ y  / 
j ]_ C  e.  CC ) )
3322, 32raleqbidv 3037 . . . . . . . . . . 11  |-  ( j  =  y  ->  ( A. k  e.  B  C  e.  CC  <->  A. k  e.  [_  y  /  j ]_ B [_ y  / 
j ]_ C  e.  CC ) )
3430, 33rspc 3173 . . . . . . . . . 10  |-  ( y  e.  A  ->  ( A. j  e.  A  A. k  e.  B  C  e.  CC  ->  A. k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  e.  CC ) )
3517, 27, 34sylc 60 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  e.  CC )
3635r19.21bi 2920 . . . . . . . 8  |-  ( (
ph  /\  k  e.  [_ y  /  j ]_ B )  ->  [_ y  /  j ]_ C  e.  CC )
3725, 36fprodcl 27629 . . . . . . 7  |-  ( ph  ->  prod_ k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  e.  CC )
38 csbeq1 3401 . . . . . . . . 9  |-  ( m  =  y  ->  [_ m  /  j ]_ B  =  [_ y  /  j ]_ B )
39 csbeq1 3401 . . . . . . . . . 10  |-  ( m  =  y  ->  [_ m  /  j ]_ C  =  [_ y  /  j ]_ C )
4039adantr 465 . . . . . . . . 9  |-  ( ( m  =  y  /\  k  e.  [_ m  / 
j ]_ B )  ->  [_ m  /  j ]_ C  =  [_ y  /  j ]_ C
)
4138, 40prodeq12dv 27603 . . . . . . . 8  |-  ( m  =  y  ->  prod_ k  e.  [_  m  / 
j ]_ B [_ m  /  j ]_ C  =  prod_ k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C )
4241prodsn 27637 . . . . . . 7  |-  ( ( y  e.  A  /\  prod_ k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  e.  CC )  ->  prod_ m  e.  {
y } prod_ k  e.  [_  m  /  j ]_ B [_ m  / 
j ]_ C  =  prod_ k  e.  [_  y  / 
j ]_ B [_ y  /  j ]_ C
)
4317, 37, 42syl2anc 661 . . . . . 6  |-  ( ph  ->  prod_ m  e.  {
y } prod_ k  e.  [_  m  /  j ]_ B [_ m  / 
j ]_ C  =  prod_ k  e.  [_  y  / 
j ]_ B [_ y  /  j ]_ C
)
44 nfcv 2616 . . . . . . . 8  |-  F/_ m [_ y  /  j ]_ C
45 nfcsb1v 3414 . . . . . . . 8  |-  F/_ k [_ m  /  k ]_ [_ y  /  j ]_ C
46 csbeq1a 3407 . . . . . . . 8  |-  ( k  =  m  ->  [_ y  /  j ]_ C  =  [_ m  /  k ]_ [_ y  /  j ]_ C )
4744, 45, 46cbvprodi 27594 . . . . . . 7  |-  prod_ k  e.  [_  y  /  j ]_ B [_ y  / 
j ]_ C  =  prod_ m  e.  [_  y  / 
j ]_ B [_ m  /  k ]_ [_ y  /  j ]_ C
48 csbeq1 3401 . . . . . . . . 9  |-  ( m  =  ( 2nd `  z
)  ->  [_ m  / 
k ]_ [_ y  / 
j ]_ C  =  [_ ( 2nd `  z )  /  k ]_ [_ y  /  j ]_ C
)
49 snfi 7503 . . . . . . . . . 10  |-  { y }  e.  Fin
50 xpfi 7697 . . . . . . . . . 10  |-  ( ( { y }  e.  Fin  /\  [_ y  / 
j ]_ B  e.  Fin )  ->  ( { y }  X.  [_ y  /  j ]_ B
)  e.  Fin )
5149, 25, 50sylancr 663 . . . . . . . . 9  |-  ( ph  ->  ( { y }  X.  [_ y  / 
j ]_ B )  e. 
Fin )
52 2ndconst 6775 . . . . . . . . . 10  |-  ( y  e.  A  ->  ( 2nd  |`  ( { y }  X.  [_ y  /  j ]_ B
) ) : ( { y }  X.  [_ y  /  j ]_ B ) -1-1-onto-> [_ y  /  j ]_ B )
5317, 52syl 16 . . . . . . . . 9  |-  ( ph  ->  ( 2nd  |`  ( { y }  X.  [_ y  /  j ]_ B ) ) : ( { y }  X.  [_ y  / 
j ]_ B ) -1-1-onto-> [_ y  /  j ]_ B
)
54 fvres 5816 . . . . . . . . . 10  |-  ( z  e.  ( { y }  X.  [_ y  /  j ]_ B
)  ->  ( ( 2nd  |`  ( { y }  X.  [_ y  /  j ]_ B
) ) `  z
)  =  ( 2nd `  z ) )
5554adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( { y }  X.  [_ y  /  j ]_ B ) )  -> 
( ( 2nd  |`  ( { y }  X.  [_ y  /  j ]_ B ) ) `  z )  =  ( 2nd `  z ) )
5645nfel1 2632 . . . . . . . . . . 11  |-  F/ k
[_ m  /  k ]_ [_ y  /  j ]_ C  e.  CC
5746eleq1d 2523 . . . . . . . . . . 11  |-  ( k  =  m  ->  ( [_ y  /  j ]_ C  e.  CC  <->  [_ m  /  k ]_ [_ y  /  j ]_ C  e.  CC )
)
5856, 57rspc 3173 . . . . . . . . . 10  |-  ( m  e.  [_ y  / 
j ]_ B  ->  ( A. k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  e.  CC  ->  [_ m  /  k ]_ [_ y  /  j ]_ C  e.  CC ) )
5935, 58mpan9 469 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  [_ y  /  j ]_ B )  ->  [_ m  /  k ]_ [_ y  /  j ]_ C  e.  CC )
6048, 51, 53, 55, 59fprodf1o 27623 . . . . . . . 8  |-  ( ph  ->  prod_ m  e.  [_  y  /  j ]_ B [_ m  /  k ]_ [_ y  /  j ]_ C  =  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C )
61 elxp 4968 . . . . . . . . . . . 12  |-  ( z  e.  ( { y }  X.  [_ y  /  j ]_ B
)  <->  E. m E. k
( z  =  <. m ,  k >.  /\  (
m  e.  { y }  /\  k  e. 
[_ y  /  j ]_ B ) ) )
62 nfv 1674 . . . . . . . . . . . . . . 15  |-  F/ j  z  =  <. m ,  k >.
63 nfv 1674 . . . . . . . . . . . . . . . 16  |-  F/ j  m  e.  { y }
6420nfcri 2609 . . . . . . . . . . . . . . . 16  |-  F/ j  k  e.  [_ y  /  j ]_ B
6563, 64nfan 1866 . . . . . . . . . . . . . . 15  |-  F/ j ( m  e.  {
y }  /\  k  e.  [_ y  /  j ]_ B )
6662, 65nfan 1866 . . . . . . . . . . . . . 14  |-  F/ j ( z  =  <. m ,  k >.  /\  (
m  e.  { y }  /\  k  e. 
[_ y  /  j ]_ B ) )
6766nfex 1886 . . . . . . . . . . . . 13  |-  F/ j E. k ( z  =  <. m ,  k
>.  /\  ( m  e. 
{ y }  /\  k  e.  [_ y  / 
j ]_ B ) )
68 nfv 1674 . . . . . . . . . . . . 13  |-  F/ m E. k ( z  = 
<. j ,  k >.  /\  ( j  =  y  /\  k  e.  B
) )
69 opeq1 4170 . . . . . . . . . . . . . . . 16  |-  ( m  =  j  ->  <. m ,  k >.  =  <. j ,  k >. )
7069eqeq2d 2468 . . . . . . . . . . . . . . 15  |-  ( m  =  j  ->  (
z  =  <. m ,  k >.  <->  z  =  <. j ,  k >.
) )
71 eleq1 2526 . . . . . . . . . . . . . . . . . 18  |-  ( m  =  j  ->  (
m  e.  { y }  <->  j  e.  {
y } ) )
72 elsn 4002 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  { y }  <-> 
j  =  y )
7371, 72syl6bb 261 . . . . . . . . . . . . . . . . 17  |-  ( m  =  j  ->  (
m  e.  { y }  <->  j  =  y ) )
7473anbi1d 704 . . . . . . . . . . . . . . . 16  |-  ( m  =  j  ->  (
( m  e.  {
y }  /\  k  e.  [_ y  /  j ]_ B )  <->  ( j  =  y  /\  k  e.  [_ y  /  j ]_ B ) ) )
7522eleq2d 2524 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  y  ->  (
k  e.  B  <->  k  e.  [_ y  /  j ]_ B ) )
7675pm5.32i 637 . . . . . . . . . . . . . . . . 17  |-  ( ( j  =  y  /\  k  e.  B )  <->  ( j  =  y  /\  k  e.  [_ y  / 
j ]_ B ) )
7776bicomi 202 . . . . . . . . . . . . . . . 16  |-  ( ( j  =  y  /\  k  e.  [_ y  / 
j ]_ B )  <->  ( j  =  y  /\  k  e.  B ) )
7874, 77syl6bb 261 . . . . . . . . . . . . . . 15  |-  ( m  =  j  ->  (
( m  e.  {
y }  /\  k  e.  [_ y  /  j ]_ B )  <->  ( j  =  y  /\  k  e.  B ) ) )
7970, 78anbi12d 710 . . . . . . . . . . . . . 14  |-  ( m  =  j  ->  (
( z  =  <. m ,  k >.  /\  (
m  e.  { y }  /\  k  e. 
[_ y  /  j ]_ B ) )  <->  ( z  =  <. j ,  k
>.  /\  ( j  =  y  /\  k  e.  B ) ) ) )
8079exbidv 1681 . . . . . . . . . . . . 13  |-  ( m  =  j  ->  ( E. k ( z  = 
<. m ,  k >.  /\  ( m  e.  {
y }  /\  k  e.  [_ y  /  j ]_ B ) )  <->  E. k
( z  =  <. j ,  k >.  /\  (
j  =  y  /\  k  e.  B )
) ) )
8167, 68, 80cbvex 1982 . . . . . . . . . . . 12  |-  ( E. m E. k ( z  =  <. m ,  k >.  /\  (
m  e.  { y }  /\  k  e. 
[_ y  /  j ]_ B ) )  <->  E. j E. k ( z  = 
<. j ,  k >.  /\  ( j  =  y  /\  k  e.  B
) ) )
8261, 81bitri 249 . . . . . . . . . . 11  |-  ( z  e.  ( { y }  X.  [_ y  /  j ]_ B
)  <->  E. j E. k
( z  =  <. j ,  k >.  /\  (
j  =  y  /\  k  e.  B )
) )
83 nfv 1674 . . . . . . . . . . . 12  |-  F/ j
ph
84 nfcv 2616 . . . . . . . . . . . . . 14  |-  F/_ j
( 2nd `  z
)
8584, 28nfcsb 3416 . . . . . . . . . . . . 13  |-  F/_ j [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C
8685nfeq2 2633 . . . . . . . . . . . 12  |-  F/ j  D  =  [_ ( 2nd `  z )  / 
k ]_ [_ y  / 
j ]_ C
87 nfv 1674 . . . . . . . . . . . . 13  |-  F/ k
ph
88 nfcsb1v 3414 . . . . . . . . . . . . . 14  |-  F/_ k [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C
8988nfeq2 2633 . . . . . . . . . . . . 13  |-  F/ k  D  =  [_ ( 2nd `  z )  / 
k ]_ [_ y  / 
j ]_ C
90 fprod2d.1 . . . . . . . . . . . . . . . 16  |-  ( z  =  <. j ,  k
>.  ->  D  =  C )
9190ad2antlr 726 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  =  <. j ,  k
>. )  /\  (
j  =  y  /\  k  e.  B )
)  ->  D  =  C )
9231ad2antrl 727 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  =  <. j ,  k
>. )  /\  (
j  =  y  /\  k  e.  B )
)  ->  C  =  [_ y  /  j ]_ C )
93 fveq2 5802 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  <. j ,  k
>.  ->  ( 2nd `  z
)  =  ( 2nd `  <. j ,  k
>. ) )
94 vex 3081 . . . . . . . . . . . . . . . . . . 19  |-  j  e. 
_V
95 vex 3081 . . . . . . . . . . . . . . . . . . 19  |-  k  e. 
_V
9694, 95op2nd 6699 . . . . . . . . . . . . . . . . . 18  |-  ( 2nd `  <. j ,  k
>. )  =  k
9793, 96syl6req 2512 . . . . . . . . . . . . . . . . 17  |-  ( z  =  <. j ,  k
>.  ->  k  =  ( 2nd `  z ) )
9897ad2antlr 726 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  =  <. j ,  k
>. )  /\  (
j  =  y  /\  k  e.  B )
)  ->  k  =  ( 2nd `  z ) )
99 csbeq1a 3407 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( 2nd `  z
)  ->  [_ y  / 
j ]_ C  =  [_ ( 2nd `  z )  /  k ]_ [_ y  /  j ]_ C
)
10098, 99syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  =  <. j ,  k
>. )  /\  (
j  =  y  /\  k  e.  B )
)  ->  [_ y  / 
j ]_ C  =  [_ ( 2nd `  z )  /  k ]_ [_ y  /  j ]_ C
)
10191, 92, 1003eqtrd 2499 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  =  <. j ,  k
>. )  /\  (
j  =  y  /\  k  e.  B )
)  ->  D  =  [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C )
102101expl 618 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( z  = 
<. j ,  k >.  /\  ( j  =  y  /\  k  e.  B
) )  ->  D  =  [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C ) )
10387, 89, 102exlimd 1852 . . . . . . . . . . . 12  |-  ( ph  ->  ( E. k ( z  =  <. j ,  k >.  /\  (
j  =  y  /\  k  e.  B )
)  ->  D  =  [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C ) )
10483, 86, 103exlimd 1852 . . . . . . . . . . 11  |-  ( ph  ->  ( E. j E. k ( z  = 
<. j ,  k >.  /\  ( j  =  y  /\  k  e.  B
) )  ->  D  =  [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C ) )
10582, 104syl5bi 217 . . . . . . . . . 10  |-  ( ph  ->  ( z  e.  ( { y }  X.  [_ y  /  j ]_ B )  ->  D  =  [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C ) )
106105imp 429 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( { y }  X.  [_ y  /  j ]_ B ) )  ->  D  =  [_ ( 2nd `  z )  /  k ]_ [_ y  /  j ]_ C )
107106prodeq2dv 27600 . . . . . . . 8  |-  ( ph  ->  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B ) D  = 
prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B ) [_ ( 2nd `  z )  / 
k ]_ [_ y  / 
j ]_ C )
10860, 107eqtr4d 2498 . . . . . . 7  |-  ( ph  ->  prod_ m  e.  [_  y  /  j ]_ B [_ m  /  k ]_ [_ y  /  j ]_ C  =  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D )
10947, 108syl5eq 2507 . . . . . 6  |-  ( ph  ->  prod_ k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  =  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D )
11043, 109eqtrd 2495 . . . . 5  |-  ( ph  ->  prod_ m  e.  {
y } prod_ k  e.  [_  m  /  j ]_ B [_ m  / 
j ]_ C  =  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D )
11112, 110syl5eq 2507 . . . 4  |-  ( ph  ->  prod_ j  e.  {
y } prod_ k  e.  B  C  =  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D )
112111adantr 465 . . 3  |-  ( (
ph  /\  ps )  ->  prod_ j  e.  {
y } prod_ k  e.  B  C  =  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D )
1133, 112oveq12d 6221 . 2  |-  ( (
ph  /\  ps )  ->  ( prod_ j  e.  x  prod_ k  e.  B  C  x.  prod_ j  e.  {
y } prod_ k  e.  B  C )  =  ( prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D  x.  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D ) )
114 fprod2d.5 . . . . 5  |-  ( ph  ->  -.  y  e.  x
)
115 disjsn 4047 . . . . 5  |-  ( ( x  i^i  { y } )  =  (/)  <->  -.  y  e.  x )
116114, 115sylibr 212 . . . 4  |-  ( ph  ->  ( x  i^i  {
y } )  =  (/) )
117 eqidd 2455 . . . 4  |-  ( ph  ->  ( x  u.  {
y } )  =  ( x  u.  {
y } ) )
118 fprod2d.2 . . . . 5  |-  ( ph  ->  A  e.  Fin )
119 ssfi 7647 . . . . 5  |-  ( ( A  e.  Fin  /\  ( x  u.  { y } )  C_  A
)  ->  ( x  u.  { y } )  e.  Fin )
120118, 13, 119syl2anc 661 . . . 4  |-  ( ph  ->  ( x  u.  {
y } )  e. 
Fin )
12113sselda 3467 . . . . 5  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  -> 
j  e.  A )
12226anassrs 648 . . . . . 6  |-  ( ( ( ph  /\  j  e.  A )  /\  k  e.  B )  ->  C  e.  CC )
12318, 122fprodcl 27629 . . . . 5  |-  ( (
ph  /\  j  e.  A )  ->  prod_ k  e.  B  C  e.  CC )
124121, 123syldan 470 . . . 4  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  ->  prod_ k  e.  B  C  e.  CC )
125116, 117, 120, 124fprodsplit 27640 . . 3  |-  ( ph  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  ( prod_ j  e.  x  prod_ k  e.  B  C  x.  prod_ j  e.  {
y } prod_ k  e.  B  C )
)
126125adantr 465 . 2  |-  ( (
ph  /\  ps )  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  ( prod_ j  e.  x  prod_ k  e.  B  C  x.  prod_ j  e.  {
y } prod_ k  e.  B  C )
)
127 eliun 4286 . . . . . . . . . 10  |-  ( z  e.  U_ j  e.  x  ( { j }  X.  B )  <->  E. j  e.  x  z  e.  ( {
j }  X.  B
) )
128 xp1st 6719 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( { j }  X.  B )  ->  ( 1st `  z
)  e.  { j } )
129 elsni 4013 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  z )  e.  { j }  ->  ( 1st `  z
)  =  j )
130128, 129syl 16 . . . . . . . . . . . . . 14  |-  ( z  e.  ( { j }  X.  B )  ->  ( 1st `  z
)  =  j )
131130eleq1d 2523 . . . . . . . . . . . . 13  |-  ( z  e.  ( { j }  X.  B )  ->  ( ( 1st `  z )  e.  x  <->  j  e.  x ) )
132131biimprd 223 . . . . . . . . . . . 12  |-  ( z  e.  ( { j }  X.  B )  ->  ( j  e.  x  ->  ( 1st `  z )  e.  x
) )
133132impcom 430 . . . . . . . . . . 11  |-  ( ( j  e.  x  /\  z  e.  ( {
j }  X.  B
) )  ->  ( 1st `  z )  e.  x )
134133rexlimiva 2942 . . . . . . . . . 10  |-  ( E. j  e.  x  z  e.  ( { j }  X.  B )  ->  ( 1st `  z
)  e.  x )
135127, 134sylbi 195 . . . . . . . . 9  |-  ( z  e.  U_ j  e.  x  ( { j }  X.  B )  ->  ( 1st `  z
)  e.  x )
136 xp1st 6719 . . . . . . . . 9  |-  ( z  e.  ( { y }  X.  [_ y  /  j ]_ B
)  ->  ( 1st `  z )  e.  {
y } )
137135, 136anim12i 566 . . . . . . . 8  |-  ( ( z  e.  U_ j  e.  x  ( {
j }  X.  B
)  /\  z  e.  ( { y }  X.  [_ y  /  j ]_ B ) )  -> 
( ( 1st `  z
)  e.  x  /\  ( 1st `  z )  e.  { y } ) )
138 elin 3650 . . . . . . . 8  |-  ( z  e.  ( U_ j  e.  x  ( {
j }  X.  B
)  i^i  ( {
y }  X.  [_ y  /  j ]_ B
) )  <->  ( z  e.  U_ j  e.  x  ( { j }  X.  B )  /\  z  e.  ( { y }  X.  [_ y  / 
j ]_ B ) ) )
139 elin 3650 . . . . . . . 8  |-  ( ( 1st `  z )  e.  ( x  i^i 
{ y } )  <-> 
( ( 1st `  z
)  e.  x  /\  ( 1st `  z )  e.  { y } ) )
140137, 138, 1393imtr4i 266 . . . . . . 7  |-  ( z  e.  ( U_ j  e.  x  ( {
j }  X.  B
)  i^i  ( {
y }  X.  [_ y  /  j ]_ B
) )  ->  ( 1st `  z )  e.  ( x  i^i  {
y } ) )
141116eleq2d 2524 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  z
)  e.  ( x  i^i  { y } )  <->  ( 1st `  z
)  e.  (/) ) )
142 noel 3752 . . . . . . . . 9  |-  -.  ( 1st `  z )  e.  (/)
143142pm2.21i 131 . . . . . . . 8  |-  ( ( 1st `  z )  e.  (/)  ->  z  e.  (/) )
144141, 143syl6bi 228 . . . . . . 7  |-  ( ph  ->  ( ( 1st `  z
)  e.  ( x  i^i  { y } )  ->  z  e.  (/) ) )
145140, 144syl5 32 . . . . . 6  |-  ( ph  ->  ( z  e.  (
U_ j  e.  x  ( { j }  X.  B )  i^i  ( { y }  X.  [_ y  /  j ]_ B ) )  -> 
z  e.  (/) ) )
146145ssrdv 3473 . . . . 5  |-  ( ph  ->  ( U_ j  e.  x  ( { j }  X.  B )  i^i  ( { y }  X.  [_ y  /  j ]_ B
) )  C_  (/) )
147 ss0 3779 . . . . 5  |-  ( (
U_ j  e.  x  ( { j }  X.  B )  i^i  ( { y }  X.  [_ y  /  j ]_ B ) )  C_  (/) 
->  ( U_ j  e.  x  ( { j }  X.  B )  i^i  ( { y }  X.  [_ y  /  j ]_ B
) )  =  (/) )
148146, 147syl 16 . . . 4  |-  ( ph  ->  ( U_ j  e.  x  ( { j }  X.  B )  i^i  ( { y }  X.  [_ y  /  j ]_ B
) )  =  (/) )
149 iunxun 4363 . . . . . 6  |-  U_ j  e.  ( x  u.  {
y } ) ( { j }  X.  B )  =  (
U_ j  e.  x  ( { j }  X.  B )  u.  U_ j  e.  { y }  ( { j }  X.  B ) )
150 nfcv 2616 . . . . . . . . 9  |-  F/_ m
( { j }  X.  B )
151 nfcv 2616 . . . . . . . . . 10  |-  F/_ j { m }
152151, 5nfxp 4977 . . . . . . . . 9  |-  F/_ j
( { m }  X.  [_ m  /  j ]_ B )
153 sneq 3998 . . . . . . . . . 10  |-  ( j  =  m  ->  { j }  =  { m } )
154153, 8xpeq12d 4976 . . . . . . . . 9  |-  ( j  =  m  ->  ( { j }  X.  B )  =  ( { m }  X.  [_ m  /  j ]_ B ) )
155150, 152, 154cbviun 4318 . . . . . . . 8  |-  U_ j  e.  { y }  ( { j }  X.  B )  =  U_ m  e.  { y }  ( { m }  X.  [_ m  / 
j ]_ B )
156 sneq 3998 . . . . . . . . . 10  |-  ( m  =  y  ->  { m }  =  { y } )
157156, 38xpeq12d 4976 . . . . . . . . 9  |-  ( m  =  y  ->  ( { m }  X.  [_ m  /  j ]_ B )  =  ( { y }  X.  [_ y  /  j ]_ B ) )
15815, 157iunxsn 4361 . . . . . . . 8  |-  U_ m  e.  { y }  ( { m }  X.  [_ m  /  j ]_ B )  =  ( { y }  X.  [_ y  /  j ]_ B )
159155, 158eqtri 2483 . . . . . . 7  |-  U_ j  e.  { y }  ( { j }  X.  B )  =  ( { y }  X.  [_ y  /  j ]_ B )
160159uneq2i 3618 . . . . . 6  |-  ( U_ j  e.  x  ( { j }  X.  B )  u.  U_ j  e.  { y }  ( { j }  X.  B ) )  =  ( U_ j  e.  x  ( { j }  X.  B )  u.  ( { y }  X.  [_ y  /  j ]_ B ) )
161149, 160eqtri 2483 . . . . 5  |-  U_ j  e.  ( x  u.  {
y } ) ( { j }  X.  B )  =  (
U_ j  e.  x  ( { j }  X.  B )  u.  ( { y }  X.  [_ y  /  j ]_ B ) )
162161a1i 11 . . . 4  |-  ( ph  ->  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B
)  =  ( U_ j  e.  x  ( { j }  X.  B )  u.  ( { y }  X.  [_ y  /  j ]_ B ) ) )
163 snfi 7503 . . . . . . 7  |-  { j }  e.  Fin
164121, 18syldan 470 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  ->  B  e.  Fin )
165 xpfi 7697 . . . . . . 7  |-  ( ( { j }  e.  Fin  /\  B  e.  Fin )  ->  ( { j }  X.  B )  e.  Fin )
166163, 164, 165sylancr 663 . . . . . 6  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  -> 
( { j }  X.  B )  e. 
Fin )
167166ralrimiva 2830 . . . . 5  |-  ( ph  ->  A. j  e.  ( x  u.  { y } ) ( { j }  X.  B
)  e.  Fin )
168 iunfi 7713 . . . . 5  |-  ( ( ( x  u.  {
y } )  e. 
Fin  /\  A. j  e.  ( x  u.  {
y } ) ( { j }  X.  B )  e.  Fin )  ->  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B
)  e.  Fin )
169120, 167, 168syl2anc 661 . . . 4  |-  ( ph  ->  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B
)  e.  Fin )
170 eliun 4286 . . . . . 6  |-  ( z  e.  U_ j  e.  ( x  u.  {
y } ) ( { j }  X.  B )  <->  E. j  e.  ( x  u.  {
y } ) z  e.  ( { j }  X.  B ) )
171 elxp 4968 . . . . . . . 8  |-  ( z  e.  ( { j }  X.  B )  <->  E. m E. k ( z  =  <. m ,  k >.  /\  (
m  e.  { j }  /\  k  e.  B ) ) )
172 simprl 755 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  z  =  <. m ,  k >. )
173 simprrl 763 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  m  e.  {
j } )
174 elsni 4013 . . . . . . . . . . . . . . 15  |-  ( m  e.  { j }  ->  m  =  j )
175173, 174syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  m  =  j )
176175opeq1d 4176 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  <. m ,  k
>.  =  <. j ,  k >. )
177172, 176eqtrd 2495 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  z  =  <. j ,  k >. )
178177, 90syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  D  =  C )
179 simpll 753 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  ph )
180121adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  j  e.  A
)
181 simprrr 764 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  k  e.  B
)
182179, 180, 181, 26syl12anc 1217 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  C  e.  CC )
183178, 182eqeltrd 2542 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  D  e.  CC )
184183ex 434 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  -> 
( ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) )  ->  D  e.  CC )
)
185184exlimdvv 1692 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  -> 
( E. m E. k ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) )  ->  D  e.  CC )
)
186171, 185syl5bi 217 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  -> 
( z  e.  ( { j }  X.  B )  ->  D  e.  CC ) )
187186rexlimdva 2947 . . . . . 6  |-  ( ph  ->  ( E. j  e.  ( x  u.  {
y } ) z  e.  ( { j }  X.  B )  ->  D  e.  CC ) )
188170, 187syl5bi 217 . . . . 5  |-  ( ph  ->  ( z  e.  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B )  ->  D  e.  CC )
)
189188imp 429 . . . 4  |-  ( (
ph  /\  z  e.  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B ) )  ->  D  e.  CC )
190148, 162, 169, 189fprodsplit 27640 . . 3  |-  ( ph  ->  prod_ z  e.  U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B ) D  =  ( prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D  x.  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D ) )
191190adantr 465 . 2  |-  ( (
ph  /\  ps )  ->  prod_ z  e.  U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B ) D  =  ( prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D  x.  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D ) )
192113, 126, 1913eqtr4d 2505 1  |-  ( (
ph  /\  ps )  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758   A.wral 2799   E.wrex 2800   [_csb 3398    u. cun 3437    i^i cin 3438    C_ wss 3439   (/)c0 3748   {csn 3988   <.cop 3994   U_ciun 4282    X. cxp 4949    |` cres 4953   -1-1-onto->wf1o 5528   ` cfv 5529  (class class class)co 6203   1stc1st 6688   2ndc2nd 6689   Fincfn 7423   CCcc 9394    x. cmul 9401   prod_cprod 27582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-inf2 7961  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473  ax-pre-sup 9474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-se 4791  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-isom 5538  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-1o 7033  df-oadd 7037  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-sup 7805  df-oi 7838  df-card 8223  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-div 10108  df-nn 10437  df-2 10494  df-3 10495  df-n0 10694  df-z 10761  df-uz 10976  df-rp 11106  df-fz 11558  df-fzo 11669  df-seq 11927  df-exp 11986  df-hash 12224  df-cj 12709  df-re 12710  df-im 12711  df-sqr 12845  df-abs 12846  df-clim 13087  df-prod 27583
This theorem is referenced by:  fprod2d  27656
  Copyright terms: Public domain W3C validator