Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evengpoap3 Structured version   Visualization version   GIF version

Theorem evengpoap3 40215
 Description: If the (strong) ternary Goldbach conjecture is valid, then every even integer greater than 10 is the sum of an odd Goldbach number and 3. (Contributed by AV, 27-Jul-2020.) (Proof shortened by AV, 15-Sep-2021.)
Assertion
Ref Expression
evengpoap3 (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOddALTV ) → ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOddALTV 𝑁 = (𝑜 + 3)))
Distinct variable groups:   𝑚,𝑁   𝑜,𝑁

Proof of Theorem evengpoap3
StepHypRef Expression
1 3odd 40155 . . . . . . . 8 3 ∈ Odd
21a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ12) → 3 ∈ Odd )
32anim1i 590 . . . . . 6 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (3 ∈ Odd ∧ 𝑁 ∈ Even ))
43ancomd 466 . . . . 5 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (𝑁 ∈ Even ∧ 3 ∈ Odd ))
5 emoo 40151 . . . . 5 ((𝑁 ∈ Even ∧ 3 ∈ Odd ) → (𝑁 − 3) ∈ Odd )
64, 5syl 17 . . . 4 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (𝑁 − 3) ∈ Odd )
7 breq2 4587 . . . . . 6 (𝑚 = (𝑁 − 3) → (7 < 𝑚 ↔ 7 < (𝑁 − 3)))
8 eleq1 2676 . . . . . 6 (𝑚 = (𝑁 − 3) → (𝑚 ∈ GoldbachOddALTV ↔ (𝑁 − 3) ∈ GoldbachOddALTV ))
97, 8imbi12d 333 . . . . 5 (𝑚 = (𝑁 − 3) → ((7 < 𝑚𝑚 ∈ GoldbachOddALTV ) ↔ (7 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOddALTV )))
109adantl 481 . . . 4 (((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ 𝑚 = (𝑁 − 3)) → ((7 < 𝑚𝑚 ∈ GoldbachOddALTV ) ↔ (7 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOddALTV )))
116, 10rspcdv 3285 . . 3 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOddALTV ) → (7 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOddALTV )))
12 eluz2 11569 . . . . . 6 (𝑁 ∈ (ℤ12) ↔ (12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁))
13 7p3e10 11479 . . . . . . . . . . 11 (7 + 3) = 10
14 1nn0 11185 . . . . . . . . . . . 12 1 ∈ ℕ0
15 0nn0 11184 . . . . . . . . . . . 12 0 ∈ ℕ0
16 2nn 11062 . . . . . . . . . . . 12 2 ∈ ℕ
17 2pos 10989 . . . . . . . . . . . 12 0 < 2
1814, 15, 16, 17declt 11406 . . . . . . . . . . 11 10 < 12
1913, 18eqbrtri 4604 . . . . . . . . . 10 (7 + 3) < 12
20 7re 10980 . . . . . . . . . . . 12 7 ∈ ℝ
21 3re 10971 . . . . . . . . . . . 12 3 ∈ ℝ
2220, 21readdcli 9932 . . . . . . . . . . 11 (7 + 3) ∈ ℝ
23 2nn0 11186 . . . . . . . . . . . . 13 2 ∈ ℕ0
2414, 23deccl 11388 . . . . . . . . . . . 12 12 ∈ ℕ0
2524nn0rei 11180 . . . . . . . . . . 11 12 ∈ ℝ
26 zre 11258 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
27 ltletr 10008 . . . . . . . . . . 11 (((7 + 3) ∈ ℝ ∧ 12 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((7 + 3) < 12 ∧ 12 ≤ 𝑁) → (7 + 3) < 𝑁))
2822, 25, 26, 27mp3an12i 1420 . . . . . . . . . 10 (𝑁 ∈ ℤ → (((7 + 3) < 12 ∧ 12 ≤ 𝑁) → (7 + 3) < 𝑁))
2919, 28mpani 708 . . . . . . . . 9 (𝑁 ∈ ℤ → (12 ≤ 𝑁 → (7 + 3) < 𝑁))
3029imp 444 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → (7 + 3) < 𝑁)
31303adant1 1072 . . . . . . 7 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → (7 + 3) < 𝑁)
3220a1i 11 . . . . . . . 8 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → 7 ∈ ℝ)
3321a1i 11 . . . . . . . 8 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → 3 ∈ ℝ)
34263ad2ant2 1076 . . . . . . . 8 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → 𝑁 ∈ ℝ)
3532, 33, 34ltaddsubd 10506 . . . . . . 7 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → ((7 + 3) < 𝑁 ↔ 7 < (𝑁 − 3)))
3631, 35mpbid 221 . . . . . 6 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → 7 < (𝑁 − 3))
3712, 36sylbi 206 . . . . 5 (𝑁 ∈ (ℤ12) → 7 < (𝑁 − 3))
3837adantr 480 . . . 4 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → 7 < (𝑁 − 3))
39 simpr 476 . . . . . 6 (((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOddALTV ) → (𝑁 − 3) ∈ GoldbachOddALTV )
40 oveq1 6556 . . . . . . . 8 (𝑜 = (𝑁 − 3) → (𝑜 + 3) = ((𝑁 − 3) + 3))
4140eqeq2d 2620 . . . . . . 7 (𝑜 = (𝑁 − 3) → (𝑁 = (𝑜 + 3) ↔ 𝑁 = ((𝑁 − 3) + 3)))
4241adantl 481 . . . . . 6 ((((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOddALTV ) ∧ 𝑜 = (𝑁 − 3)) → (𝑁 = (𝑜 + 3) ↔ 𝑁 = ((𝑁 − 3) + 3)))
43 eluzelcn 11575 . . . . . . . . . 10 (𝑁 ∈ (ℤ12) → 𝑁 ∈ ℂ)
44 3cn 10972 . . . . . . . . . 10 3 ∈ ℂ
4543, 44jctir 559 . . . . . . . . 9 (𝑁 ∈ (ℤ12) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
4645adantr 480 . . . . . . . 8 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
4746adantr 480 . . . . . . 7 (((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOddALTV ) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
48 npcan 10169 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 3 ∈ ℂ) → ((𝑁 − 3) + 3) = 𝑁)
4948eqcomd 2616 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 3 ∈ ℂ) → 𝑁 = ((𝑁 − 3) + 3))
5047, 49syl 17 . . . . . 6 (((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOddALTV ) → 𝑁 = ((𝑁 − 3) + 3))
5139, 42, 50rspcedvd 3289 . . . . 5 (((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOddALTV ) → ∃𝑜 ∈ GoldbachOddALTV 𝑁 = (𝑜 + 3))
5251ex 449 . . . 4 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ((𝑁 − 3) ∈ GoldbachOddALTV → ∃𝑜 ∈ GoldbachOddALTV 𝑁 = (𝑜 + 3)))
5338, 52embantd 57 . . 3 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ((7 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOddALTV ) → ∃𝑜 ∈ GoldbachOddALTV 𝑁 = (𝑜 + 3)))
5411, 53syld 46 . 2 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOddALTV ) → ∃𝑜 ∈ GoldbachOddALTV 𝑁 = (𝑜 + 3)))
5554com12 32 1 (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOddALTV ) → ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOddALTV 𝑁 = (𝑜 + 3)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953   ≤ cle 9954   − cmin 10145  2c2 10947  3c3 10948  7c7 10952  ℤcz 11254  ;cdc 11369  ℤ≥cuz 11563   Even ceven 40075   Odd codd 40076   GoldbachOddALTV cgboa 40169 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-even 40077  df-odd 40078 This theorem is referenced by:  nnsum4primesevenALTV  40217
 Copyright terms: Public domain W3C validator