MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzuz2 Structured version   Visualization version   GIF version

Theorem elfzuz2 12217
Description: Implication of membership in a finite set of sequential integers. (Contributed by NM, 20-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzuz2 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))

Proof of Theorem elfzuz2
StepHypRef Expression
1 elfzuzb 12207 . 2 (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)))
2 eqid 2610 . . 3 (ℤ𝑀) = (ℤ𝑀)
32uztrn2 11581 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ (ℤ𝑀))
41, 3sylbi 206 1 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 1977  cfv 5804  (class class class)co 6549  cuz 11563  ...cfz 12197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-neg 10148  df-z 11255  df-uz 11564  df-fz 12198
This theorem is referenced by:  elfzle3  12218  elfzubelfz  12224  fzn0  12226  fzopth  12249  elfzmlbm  12318  elfzom1elp1fzo  12402  bcm1k  12964  bcpasc  12970  seqcoll  13105  swrdccatin12lem2c  13339  swrdccatin12  13342  splid  13355  spllen  13356  prmodvdslcmf  15589  gexcl3  17825  dvn2bss  23499  pserdvlem2  23986  ppinprm  24678  chtnprm  24680  chpval2  24743  chpchtsum  24744  lgsdir2lem2  24851  fzto1stfv1  29182  fzto1stinvn  29185  wrdsplex  29944  monoords  38452  pfxccatin12  40288  elfzr  40364  elfzlmr  40366
  Copyright terms: Public domain W3C validator