MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzuz2 Structured version   Unicode version

Theorem elfzuz2 11442
Description: Implication of membership in a finite set of sequential integers. (Contributed by NM, 20-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzuz2  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  M )
)

Proof of Theorem elfzuz2
StepHypRef Expression
1 elfzuzb 11433 . 2  |-  ( K  e.  ( M ... N )  <->  ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  K ) ) )
2 eqid 2433 . . 3  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
32uztrn2 10865 . 2  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  N  e.  ( ZZ>= `  M )
)
41, 3sylbi 195 1  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  M )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1755   ` cfv 5406  (class class class)co 6080   ZZ>=cuz 10848   ...cfz 11423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9325  ax-resscn 9326  ax-pre-lttri 9343  ax-pre-lttrn 9344
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-id 4623  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-1st 6566  df-2nd 6567  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-pnf 9407  df-mnf 9408  df-xr 9409  df-ltxr 9410  df-le 9411  df-neg 9585  df-z 10634  df-uz 10849  df-fz 11424
This theorem is referenced by:  elfzle3  11443  fzn0  11450  fzopth  11481  bcm1k  12074  bcpasc  12080  seqcoll  12199  swrdccatin12lem2c  12362  swrdccatin12  12365  splid  12378  spllen  12379  gexcl3  16065  dvn2bss  21245  pserdvlem2  21777  ppinprm  22374  chtnprm  22376  chpval2  22441  chpchtsum  22442  lgsdir2lem2  22547  wrdsplex  26786  elfzubelfz  30044
  Copyright terms: Public domain W3C validator