MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzuz2 Structured version   Unicode version

Theorem elfzuz2 11695
Description: Implication of membership in a finite set of sequential integers. (Contributed by NM, 20-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzuz2  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  M )
)

Proof of Theorem elfzuz2
StepHypRef Expression
1 elfzuzb 11686 . 2  |-  ( K  e.  ( M ... N )  <->  ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  K ) ) )
2 eqid 2441 . . 3  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
32uztrn2 11102 . 2  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  N  e.  ( ZZ>= `  M )
)
41, 3sylbi 195 1  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  M )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1802   ` cfv 5574  (class class class)co 6277   ZZ>=cuz 11085   ...cfz 11676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-cnex 9546  ax-resscn 9547  ax-pre-lttri 9564  ax-pre-lttrn 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-id 4781  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-1st 6781  df-2nd 6782  df-er 7309  df-en 7515  df-dom 7516  df-sdom 7517  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-neg 9808  df-z 10866  df-uz 11086  df-fz 11677
This theorem is referenced by:  elfzle3  11696  elfzubelfz  11702  fzn0  11704  fzopth  11724  elfzmlbm  11788  elfzom1elp1fzo  11857  bcm1k  12367  bcpasc  12373  seqcoll  12486  swrdccatin12lem2c  12687  swrdccatin12  12690  splid  12703  spllen  12704  gexcl3  16476  dvn2bss  22199  pserdvlem2  22688  ppinprm  23291  chtnprm  23293  chpval2  23358  chpchtsum  23359  lgsdir2lem2  23464  wrdsplex  28361  monoords  31441
  Copyright terms: Public domain W3C validator