MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcoll Structured version   Visualization version   GIF version

Theorem seqcoll 13105
Description: The function 𝐹 contains a sparse set of nonzero values to be summed. The function 𝐺 is an order isomorphism from the set of nonzero values of 𝐹 to a 1-based finite sequence, and 𝐻 collects these nonzero values together. Under these conditions, the sum over the values in 𝐻 yields the same result as the sum over the original set 𝐹. (Contributed by Mario Carneiro, 2-Apr-2014.)
Hypotheses
Ref Expression
seqcoll.1 ((𝜑𝑘𝑆) → (𝑍 + 𝑘) = 𝑘)
seqcoll.1b ((𝜑𝑘𝑆) → (𝑘 + 𝑍) = 𝑘)
seqcoll.c ((𝜑 ∧ (𝑘𝑆𝑛𝑆)) → (𝑘 + 𝑛) ∈ 𝑆)
seqcoll.a (𝜑𝑍𝑆)
seqcoll.2 (𝜑𝐺 Isom < , < ((1...(#‘𝐴)), 𝐴))
seqcoll.3 (𝜑𝑁 ∈ (1...(#‘𝐴)))
seqcoll.4 (𝜑𝐴 ⊆ (ℤ𝑀))
seqcoll.5 ((𝜑𝑘 ∈ (𝑀...(𝐺‘(#‘𝐴)))) → (𝐹𝑘) ∈ 𝑆)
seqcoll.6 ((𝜑𝑘 ∈ ((𝑀...(𝐺‘(#‘𝐴))) ∖ 𝐴)) → (𝐹𝑘) = 𝑍)
seqcoll.7 ((𝜑𝑛 ∈ (1...(#‘𝐴))) → (𝐻𝑛) = (𝐹‘(𝐺𝑛)))
Assertion
Ref Expression
seqcoll (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺𝑁)) = (seq1( + , 𝐻)‘𝑁))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹,𝑛   𝑘,𝐺,𝑛   𝑛,𝐻   𝑘,𝑀,𝑛   + ,𝑘,𝑛   𝜑,𝑘,𝑛   𝑆,𝑘,𝑛   𝑘,𝑍
Allowed substitution hints:   𝐻(𝑘)   𝑁(𝑘,𝑛)   𝑍(𝑛)

Proof of Theorem seqcoll
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqcoll.3 . 2 (𝜑𝑁 ∈ (1...(#‘𝐴)))
2 elfznn 12241 . . . 4 (𝑁 ∈ (1...(#‘𝐴)) → 𝑁 ∈ ℕ)
31, 2syl 17 . . 3 (𝜑𝑁 ∈ ℕ)
4 eleq1 2676 . . . . . 6 (𝑦 = 1 → (𝑦 ∈ (1...(#‘𝐴)) ↔ 1 ∈ (1...(#‘𝐴))))
5 fveq2 6103 . . . . . . . 8 (𝑦 = 1 → (𝐺𝑦) = (𝐺‘1))
65fveq2d 6107 . . . . . . 7 (𝑦 = 1 → (seq𝑀( + , 𝐹)‘(𝐺𝑦)) = (seq𝑀( + , 𝐹)‘(𝐺‘1)))
7 fveq2 6103 . . . . . . 7 (𝑦 = 1 → (seq1( + , 𝐻)‘𝑦) = (seq1( + , 𝐻)‘1))
86, 7eqeq12d 2625 . . . . . 6 (𝑦 = 1 → ((seq𝑀( + , 𝐹)‘(𝐺𝑦)) = (seq1( + , 𝐻)‘𝑦) ↔ (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1)))
94, 8imbi12d 333 . . . . 5 (𝑦 = 1 → ((𝑦 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺𝑦)) = (seq1( + , 𝐻)‘𝑦)) ↔ (1 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1))))
109imbi2d 329 . . . 4 (𝑦 = 1 → ((𝜑 → (𝑦 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺𝑦)) = (seq1( + , 𝐻)‘𝑦))) ↔ (𝜑 → (1 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1)))))
11 eleq1 2676 . . . . . 6 (𝑦 = 𝑚 → (𝑦 ∈ (1...(#‘𝐴)) ↔ 𝑚 ∈ (1...(#‘𝐴))))
12 fveq2 6103 . . . . . . . 8 (𝑦 = 𝑚 → (𝐺𝑦) = (𝐺𝑚))
1312fveq2d 6107 . . . . . . 7 (𝑦 = 𝑚 → (seq𝑀( + , 𝐹)‘(𝐺𝑦)) = (seq𝑀( + , 𝐹)‘(𝐺𝑚)))
14 fveq2 6103 . . . . . . 7 (𝑦 = 𝑚 → (seq1( + , 𝐻)‘𝑦) = (seq1( + , 𝐻)‘𝑚))
1513, 14eqeq12d 2625 . . . . . 6 (𝑦 = 𝑚 → ((seq𝑀( + , 𝐹)‘(𝐺𝑦)) = (seq1( + , 𝐻)‘𝑦) ↔ (seq𝑀( + , 𝐹)‘(𝐺𝑚)) = (seq1( + , 𝐻)‘𝑚)))
1611, 15imbi12d 333 . . . . 5 (𝑦 = 𝑚 → ((𝑦 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺𝑦)) = (seq1( + , 𝐻)‘𝑦)) ↔ (𝑚 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺𝑚)) = (seq1( + , 𝐻)‘𝑚))))
1716imbi2d 329 . . . 4 (𝑦 = 𝑚 → ((𝜑 → (𝑦 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺𝑦)) = (seq1( + , 𝐻)‘𝑦))) ↔ (𝜑 → (𝑚 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺𝑚)) = (seq1( + , 𝐻)‘𝑚)))))
18 eleq1 2676 . . . . . 6 (𝑦 = (𝑚 + 1) → (𝑦 ∈ (1...(#‘𝐴)) ↔ (𝑚 + 1) ∈ (1...(#‘𝐴))))
19 fveq2 6103 . . . . . . . 8 (𝑦 = (𝑚 + 1) → (𝐺𝑦) = (𝐺‘(𝑚 + 1)))
2019fveq2d 6107 . . . . . . 7 (𝑦 = (𝑚 + 1) → (seq𝑀( + , 𝐹)‘(𝐺𝑦)) = (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))))
21 fveq2 6103 . . . . . . 7 (𝑦 = (𝑚 + 1) → (seq1( + , 𝐻)‘𝑦) = (seq1( + , 𝐻)‘(𝑚 + 1)))
2220, 21eqeq12d 2625 . . . . . 6 (𝑦 = (𝑚 + 1) → ((seq𝑀( + , 𝐹)‘(𝐺𝑦)) = (seq1( + , 𝐻)‘𝑦) ↔ (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1))))
2318, 22imbi12d 333 . . . . 5 (𝑦 = (𝑚 + 1) → ((𝑦 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺𝑦)) = (seq1( + , 𝐻)‘𝑦)) ↔ ((𝑚 + 1) ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))))
2423imbi2d 329 . . . 4 (𝑦 = (𝑚 + 1) → ((𝜑 → (𝑦 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺𝑦)) = (seq1( + , 𝐻)‘𝑦))) ↔ (𝜑 → ((𝑚 + 1) ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1))))))
25 eleq1 2676 . . . . . 6 (𝑦 = 𝑁 → (𝑦 ∈ (1...(#‘𝐴)) ↔ 𝑁 ∈ (1...(#‘𝐴))))
26 fveq2 6103 . . . . . . . 8 (𝑦 = 𝑁 → (𝐺𝑦) = (𝐺𝑁))
2726fveq2d 6107 . . . . . . 7 (𝑦 = 𝑁 → (seq𝑀( + , 𝐹)‘(𝐺𝑦)) = (seq𝑀( + , 𝐹)‘(𝐺𝑁)))
28 fveq2 6103 . . . . . . 7 (𝑦 = 𝑁 → (seq1( + , 𝐻)‘𝑦) = (seq1( + , 𝐻)‘𝑁))
2927, 28eqeq12d 2625 . . . . . 6 (𝑦 = 𝑁 → ((seq𝑀( + , 𝐹)‘(𝐺𝑦)) = (seq1( + , 𝐻)‘𝑦) ↔ (seq𝑀( + , 𝐹)‘(𝐺𝑁)) = (seq1( + , 𝐻)‘𝑁)))
3025, 29imbi12d 333 . . . . 5 (𝑦 = 𝑁 → ((𝑦 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺𝑦)) = (seq1( + , 𝐻)‘𝑦)) ↔ (𝑁 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺𝑁)) = (seq1( + , 𝐻)‘𝑁))))
3130imbi2d 329 . . . 4 (𝑦 = 𝑁 → ((𝜑 → (𝑦 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺𝑦)) = (seq1( + , 𝐻)‘𝑦))) ↔ (𝜑 → (𝑁 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺𝑁)) = (seq1( + , 𝐻)‘𝑁)))))
32 seqcoll.1 . . . . . . . . 9 ((𝜑𝑘𝑆) → (𝑍 + 𝑘) = 𝑘)
33 seqcoll.a . . . . . . . . 9 (𝜑𝑍𝑆)
34 seqcoll.4 . . . . . . . . . 10 (𝜑𝐴 ⊆ (ℤ𝑀))
35 seqcoll.2 . . . . . . . . . . . . 13 (𝜑𝐺 Isom < , < ((1...(#‘𝐴)), 𝐴))
36 isof1o 6473 . . . . . . . . . . . . 13 (𝐺 Isom < , < ((1...(#‘𝐴)), 𝐴) → 𝐺:(1...(#‘𝐴))–1-1-onto𝐴)
3735, 36syl 17 . . . . . . . . . . . 12 (𝜑𝐺:(1...(#‘𝐴))–1-1-onto𝐴)
38 f1of 6050 . . . . . . . . . . . 12 (𝐺:(1...(#‘𝐴))–1-1-onto𝐴𝐺:(1...(#‘𝐴))⟶𝐴)
3937, 38syl 17 . . . . . . . . . . 11 (𝜑𝐺:(1...(#‘𝐴))⟶𝐴)
40 elfzuz2 12217 . . . . . . . . . . . . 13 (𝑁 ∈ (1...(#‘𝐴)) → (#‘𝐴) ∈ (ℤ‘1))
411, 40syl 17 . . . . . . . . . . . 12 (𝜑 → (#‘𝐴) ∈ (ℤ‘1))
42 eluzfz1 12219 . . . . . . . . . . . 12 ((#‘𝐴) ∈ (ℤ‘1) → 1 ∈ (1...(#‘𝐴)))
4341, 42syl 17 . . . . . . . . . . 11 (𝜑 → 1 ∈ (1...(#‘𝐴)))
4439, 43ffvelrnd 6268 . . . . . . . . . 10 (𝜑 → (𝐺‘1) ∈ 𝐴)
4534, 44sseldd 3569 . . . . . . . . 9 (𝜑 → (𝐺‘1) ∈ (ℤ𝑀))
46 eluzle 11576 . . . . . . . . . . . . 13 ((#‘𝐴) ∈ (ℤ‘1) → 1 ≤ (#‘𝐴))
4741, 46syl 17 . . . . . . . . . . . 12 (𝜑 → 1 ≤ (#‘𝐴))
48 elfzelz 12213 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...(#‘𝐴)) → 𝑘 ∈ ℤ)
4948ssriv 3572 . . . . . . . . . . . . . . . 16 (1...(#‘𝐴)) ⊆ ℤ
50 zssre 11261 . . . . . . . . . . . . . . . 16 ℤ ⊆ ℝ
5149, 50sstri 3577 . . . . . . . . . . . . . . 15 (1...(#‘𝐴)) ⊆ ℝ
5251a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (1...(#‘𝐴)) ⊆ ℝ)
53 ressxr 9962 . . . . . . . . . . . . . 14 ℝ ⊆ ℝ*
5452, 53syl6ss 3580 . . . . . . . . . . . . 13 (𝜑 → (1...(#‘𝐴)) ⊆ ℝ*)
55 eluzelre 11574 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℝ)
5655ssriv 3572 . . . . . . . . . . . . . . 15 (ℤ𝑀) ⊆ ℝ
5734, 56syl6ss 3580 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ ℝ)
5857, 53syl6ss 3580 . . . . . . . . . . . . 13 (𝜑𝐴 ⊆ ℝ*)
59 eluzfz2 12220 . . . . . . . . . . . . . 14 ((#‘𝐴) ∈ (ℤ‘1) → (#‘𝐴) ∈ (1...(#‘𝐴)))
6041, 59syl 17 . . . . . . . . . . . . 13 (𝜑 → (#‘𝐴) ∈ (1...(#‘𝐴)))
61 leisorel 13101 . . . . . . . . . . . . 13 ((𝐺 Isom < , < ((1...(#‘𝐴)), 𝐴) ∧ ((1...(#‘𝐴)) ⊆ ℝ*𝐴 ⊆ ℝ*) ∧ (1 ∈ (1...(#‘𝐴)) ∧ (#‘𝐴) ∈ (1...(#‘𝐴)))) → (1 ≤ (#‘𝐴) ↔ (𝐺‘1) ≤ (𝐺‘(#‘𝐴))))
6235, 54, 58, 43, 60, 61syl122anc 1327 . . . . . . . . . . . 12 (𝜑 → (1 ≤ (#‘𝐴) ↔ (𝐺‘1) ≤ (𝐺‘(#‘𝐴))))
6347, 62mpbid 221 . . . . . . . . . . 11 (𝜑 → (𝐺‘1) ≤ (𝐺‘(#‘𝐴)))
6439, 60ffvelrnd 6268 . . . . . . . . . . . . . 14 (𝜑 → (𝐺‘(#‘𝐴)) ∈ 𝐴)
6534, 64sseldd 3569 . . . . . . . . . . . . 13 (𝜑 → (𝐺‘(#‘𝐴)) ∈ (ℤ𝑀))
66 eluzelz 11573 . . . . . . . . . . . . 13 ((𝐺‘(#‘𝐴)) ∈ (ℤ𝑀) → (𝐺‘(#‘𝐴)) ∈ ℤ)
6765, 66syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐺‘(#‘𝐴)) ∈ ℤ)
68 elfz5 12205 . . . . . . . . . . . 12 (((𝐺‘1) ∈ (ℤ𝑀) ∧ (𝐺‘(#‘𝐴)) ∈ ℤ) → ((𝐺‘1) ∈ (𝑀...(𝐺‘(#‘𝐴))) ↔ (𝐺‘1) ≤ (𝐺‘(#‘𝐴))))
6945, 67, 68syl2anc 691 . . . . . . . . . . 11 (𝜑 → ((𝐺‘1) ∈ (𝑀...(𝐺‘(#‘𝐴))) ↔ (𝐺‘1) ≤ (𝐺‘(#‘𝐴))))
7063, 69mpbird 246 . . . . . . . . . 10 (𝜑 → (𝐺‘1) ∈ (𝑀...(𝐺‘(#‘𝐴))))
71 fveq2 6103 . . . . . . . . . . . . 13 (𝑘 = (𝐺‘1) → (𝐹𝑘) = (𝐹‘(𝐺‘1)))
7271eleq1d 2672 . . . . . . . . . . . 12 (𝑘 = (𝐺‘1) → ((𝐹𝑘) ∈ 𝑆 ↔ (𝐹‘(𝐺‘1)) ∈ 𝑆))
7372imbi2d 329 . . . . . . . . . . 11 (𝑘 = (𝐺‘1) → ((𝜑 → (𝐹𝑘) ∈ 𝑆) ↔ (𝜑 → (𝐹‘(𝐺‘1)) ∈ 𝑆)))
74 seqcoll.5 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀...(𝐺‘(#‘𝐴)))) → (𝐹𝑘) ∈ 𝑆)
7574expcom 450 . . . . . . . . . . 11 (𝑘 ∈ (𝑀...(𝐺‘(#‘𝐴))) → (𝜑 → (𝐹𝑘) ∈ 𝑆))
7673, 75vtoclga 3245 . . . . . . . . . 10 ((𝐺‘1) ∈ (𝑀...(𝐺‘(#‘𝐴))) → (𝜑 → (𝐹‘(𝐺‘1)) ∈ 𝑆))
7770, 76mpcom 37 . . . . . . . . 9 (𝜑 → (𝐹‘(𝐺‘1)) ∈ 𝑆)
78 eluzelz 11573 . . . . . . . . . . . . . . . . . 18 ((𝐺‘1) ∈ (ℤ𝑀) → (𝐺‘1) ∈ ℤ)
7945, 78syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺‘1) ∈ ℤ)
80 peano2zm 11297 . . . . . . . . . . . . . . . . 17 ((𝐺‘1) ∈ ℤ → ((𝐺‘1) − 1) ∈ ℤ)
8179, 80syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐺‘1) − 1) ∈ ℤ)
8281zred 11358 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐺‘1) − 1) ∈ ℝ)
8379zred 11358 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺‘1) ∈ ℝ)
8467zred 11358 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺‘(#‘𝐴)) ∈ ℝ)
8583lem1d 10836 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐺‘1) − 1) ≤ (𝐺‘1))
8682, 83, 84, 85, 63letrd 10073 . . . . . . . . . . . . . 14 (𝜑 → ((𝐺‘1) − 1) ≤ (𝐺‘(#‘𝐴)))
87 eluz 11577 . . . . . . . . . . . . . . 15 ((((𝐺‘1) − 1) ∈ ℤ ∧ (𝐺‘(#‘𝐴)) ∈ ℤ) → ((𝐺‘(#‘𝐴)) ∈ (ℤ‘((𝐺‘1) − 1)) ↔ ((𝐺‘1) − 1) ≤ (𝐺‘(#‘𝐴))))
8881, 67, 87syl2anc 691 . . . . . . . . . . . . . 14 (𝜑 → ((𝐺‘(#‘𝐴)) ∈ (ℤ‘((𝐺‘1) − 1)) ↔ ((𝐺‘1) − 1) ≤ (𝐺‘(#‘𝐴))))
8986, 88mpbird 246 . . . . . . . . . . . . 13 (𝜑 → (𝐺‘(#‘𝐴)) ∈ (ℤ‘((𝐺‘1) − 1)))
90 fzss2 12252 . . . . . . . . . . . . 13 ((𝐺‘(#‘𝐴)) ∈ (ℤ‘((𝐺‘1) − 1)) → (𝑀...((𝐺‘1) − 1)) ⊆ (𝑀...(𝐺‘(#‘𝐴))))
9189, 90syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑀...((𝐺‘1) − 1)) ⊆ (𝑀...(𝐺‘(#‘𝐴))))
9291sselda 3568 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀...((𝐺‘1) − 1))) → 𝑘 ∈ (𝑀...(𝐺‘(#‘𝐴))))
93 eluzel2 11568 . . . . . . . . . . . . . . 15 ((𝐺‘1) ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
9445, 93syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℤ)
95 elfzm11 12280 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ (𝐺‘1) ∈ ℤ) → (𝑘 ∈ (𝑀...((𝐺‘1) − 1)) ↔ (𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘 < (𝐺‘1))))
9694, 79, 95syl2anc 691 . . . . . . . . . . . . 13 (𝜑 → (𝑘 ∈ (𝑀...((𝐺‘1) − 1)) ↔ (𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘 < (𝐺‘1))))
97 simp3 1056 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘 < (𝐺‘1)) → 𝑘 < (𝐺‘1))
98 f1ocnv 6062 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐺:(1...(#‘𝐴))–1-1-onto𝐴𝐺:𝐴1-1-onto→(1...(#‘𝐴)))
9937, 98syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐺:𝐴1-1-onto→(1...(#‘𝐴)))
100 f1of 6050 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺:𝐴1-1-onto→(1...(#‘𝐴)) → 𝐺:𝐴⟶(1...(#‘𝐴)))
10199, 100syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐺:𝐴⟶(1...(#‘𝐴)))
102101ffvelrnda 6267 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝐴) → (𝐺𝑘) ∈ (1...(#‘𝐴)))
103 elfznn 12241 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺𝑘) ∈ (1...(#‘𝐴)) → (𝐺𝑘) ∈ ℕ)
104102, 103syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝐴) → (𝐺𝑘) ∈ ℕ)
105104nnge1d 10940 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝐴) → 1 ≤ (𝐺𝑘))
10635adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝐴) → 𝐺 Isom < , < ((1...(#‘𝐴)), 𝐴))
10754adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝐴) → (1...(#‘𝐴)) ⊆ ℝ*)
10858adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝐴) → 𝐴 ⊆ ℝ*)
10943adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝐴) → 1 ∈ (1...(#‘𝐴)))
110 leisorel 13101 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 Isom < , < ((1...(#‘𝐴)), 𝐴) ∧ ((1...(#‘𝐴)) ⊆ ℝ*𝐴 ⊆ ℝ*) ∧ (1 ∈ (1...(#‘𝐴)) ∧ (𝐺𝑘) ∈ (1...(#‘𝐴)))) → (1 ≤ (𝐺𝑘) ↔ (𝐺‘1) ≤ (𝐺‘(𝐺𝑘))))
111106, 107, 108, 109, 102, 110syl122anc 1327 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝐴) → (1 ≤ (𝐺𝑘) ↔ (𝐺‘1) ≤ (𝐺‘(𝐺𝑘))))
112105, 111mpbid 221 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐴) → (𝐺‘1) ≤ (𝐺‘(𝐺𝑘)))
113 f1ocnvfv2 6433 . . . . . . . . . . . . . . . . . . 19 ((𝐺:(1...(#‘𝐴))–1-1-onto𝐴𝑘𝐴) → (𝐺‘(𝐺𝑘)) = 𝑘)
11437, 113sylan 487 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐴) → (𝐺‘(𝐺𝑘)) = 𝑘)
115112, 114breqtrd 4609 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐴) → (𝐺‘1) ≤ 𝑘)
11683adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐴) → (𝐺‘1) ∈ ℝ)
11757sselda 3568 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐴) → 𝑘 ∈ ℝ)
118116, 117lenltd 10062 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐴) → ((𝐺‘1) ≤ 𝑘 ↔ ¬ 𝑘 < (𝐺‘1)))
119115, 118mpbid 221 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → ¬ 𝑘 < (𝐺‘1))
120119ex 449 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘𝐴 → ¬ 𝑘 < (𝐺‘1)))
121120con2d 128 . . . . . . . . . . . . . 14 (𝜑 → (𝑘 < (𝐺‘1) → ¬ 𝑘𝐴))
12297, 121syl5 33 . . . . . . . . . . . . 13 (𝜑 → ((𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘 < (𝐺‘1)) → ¬ 𝑘𝐴))
12396, 122sylbid 229 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (𝑀...((𝐺‘1) − 1)) → ¬ 𝑘𝐴))
124123imp 444 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀...((𝐺‘1) − 1))) → ¬ 𝑘𝐴)
12592, 124eldifd 3551 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀...((𝐺‘1) − 1))) → 𝑘 ∈ ((𝑀...(𝐺‘(#‘𝐴))) ∖ 𝐴))
126 seqcoll.6 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝑀...(𝐺‘(#‘𝐴))) ∖ 𝐴)) → (𝐹𝑘) = 𝑍)
127125, 126syldan 486 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...((𝐺‘1) − 1))) → (𝐹𝑘) = 𝑍)
12832, 33, 45, 77, 127seqid 12708 . . . . . . . 8 (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ‘(𝐺‘1))) = seq(𝐺‘1)( + , 𝐹))
129128fveq1d 6105 . . . . . . 7 (𝜑 → ((seq𝑀( + , 𝐹) ↾ (ℤ‘(𝐺‘1)))‘(𝐺‘1)) = (seq(𝐺‘1)( + , 𝐹)‘(𝐺‘1)))
130 uzid 11578 . . . . . . . . 9 ((𝐺‘1) ∈ ℤ → (𝐺‘1) ∈ (ℤ‘(𝐺‘1)))
13179, 130syl 17 . . . . . . . 8 (𝜑 → (𝐺‘1) ∈ (ℤ‘(𝐺‘1)))
132 fvres 6117 . . . . . . . 8 ((𝐺‘1) ∈ (ℤ‘(𝐺‘1)) → ((seq𝑀( + , 𝐹) ↾ (ℤ‘(𝐺‘1)))‘(𝐺‘1)) = (seq𝑀( + , 𝐹)‘(𝐺‘1)))
133131, 132syl 17 . . . . . . 7 (𝜑 → ((seq𝑀( + , 𝐹) ↾ (ℤ‘(𝐺‘1)))‘(𝐺‘1)) = (seq𝑀( + , 𝐹)‘(𝐺‘1)))
134 seq1 12676 . . . . . . . . 9 ((𝐺‘1) ∈ ℤ → (seq(𝐺‘1)( + , 𝐹)‘(𝐺‘1)) = (𝐹‘(𝐺‘1)))
13579, 134syl 17 . . . . . . . 8 (𝜑 → (seq(𝐺‘1)( + , 𝐹)‘(𝐺‘1)) = (𝐹‘(𝐺‘1)))
136 fveq2 6103 . . . . . . . . . . . 12 (𝑛 = 1 → (𝐻𝑛) = (𝐻‘1))
137 fveq2 6103 . . . . . . . . . . . . 13 (𝑛 = 1 → (𝐺𝑛) = (𝐺‘1))
138137fveq2d 6107 . . . . . . . . . . . 12 (𝑛 = 1 → (𝐹‘(𝐺𝑛)) = (𝐹‘(𝐺‘1)))
139136, 138eqeq12d 2625 . . . . . . . . . . 11 (𝑛 = 1 → ((𝐻𝑛) = (𝐹‘(𝐺𝑛)) ↔ (𝐻‘1) = (𝐹‘(𝐺‘1))))
140139imbi2d 329 . . . . . . . . . 10 (𝑛 = 1 → ((𝜑 → (𝐻𝑛) = (𝐹‘(𝐺𝑛))) ↔ (𝜑 → (𝐻‘1) = (𝐹‘(𝐺‘1)))))
141 seqcoll.7 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(#‘𝐴))) → (𝐻𝑛) = (𝐹‘(𝐺𝑛)))
142141expcom 450 . . . . . . . . . 10 (𝑛 ∈ (1...(#‘𝐴)) → (𝜑 → (𝐻𝑛) = (𝐹‘(𝐺𝑛))))
143140, 142vtoclga 3245 . . . . . . . . 9 (1 ∈ (1...(#‘𝐴)) → (𝜑 → (𝐻‘1) = (𝐹‘(𝐺‘1))))
14443, 143mpcom 37 . . . . . . . 8 (𝜑 → (𝐻‘1) = (𝐹‘(𝐺‘1)))
145135, 144eqtr4d 2647 . . . . . . 7 (𝜑 → (seq(𝐺‘1)( + , 𝐹)‘(𝐺‘1)) = (𝐻‘1))
146129, 133, 1453eqtr3d 2652 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (𝐻‘1))
147 1z 11284 . . . . . . 7 1 ∈ ℤ
148 seq1 12676 . . . . . . 7 (1 ∈ ℤ → (seq1( + , 𝐻)‘1) = (𝐻‘1))
149147, 148ax-mp 5 . . . . . 6 (seq1( + , 𝐻)‘1) = (𝐻‘1)
150146, 149syl6eqr 2662 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1))
151150a1d 25 . . . 4 (𝜑 → (1 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1)))
152 simplr 788 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → 𝑚 ∈ ℕ)
153 nnuz 11599 . . . . . . . . . . 11 ℕ = (ℤ‘1)
154152, 153syl6eleq 2698 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → 𝑚 ∈ (ℤ‘1))
155 nnz 11276 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
156155ad2antlr 759 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → 𝑚 ∈ ℤ)
157 elfzuz3 12210 . . . . . . . . . . . 12 ((𝑚 + 1) ∈ (1...(#‘𝐴)) → (#‘𝐴) ∈ (ℤ‘(𝑚 + 1)))
158157adantl 481 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (#‘𝐴) ∈ (ℤ‘(𝑚 + 1)))
159 peano2uzr 11619 . . . . . . . . . . 11 ((𝑚 ∈ ℤ ∧ (#‘𝐴) ∈ (ℤ‘(𝑚 + 1))) → (#‘𝐴) ∈ (ℤ𝑚))
160156, 158, 159syl2anc 691 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (#‘𝐴) ∈ (ℤ𝑚))
161 elfzuzb 12207 . . . . . . . . . 10 (𝑚 ∈ (1...(#‘𝐴)) ↔ (𝑚 ∈ (ℤ‘1) ∧ (#‘𝐴) ∈ (ℤ𝑚)))
162154, 160, 161sylanbrc 695 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → 𝑚 ∈ (1...(#‘𝐴)))
163162ex 449 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + 1) ∈ (1...(#‘𝐴)) → 𝑚 ∈ (1...(#‘𝐴))))
164163imim1d 80 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ((𝑚 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺𝑚)) = (seq1( + , 𝐻)‘𝑚)) → ((𝑚 + 1) ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺𝑚)) = (seq1( + , 𝐻)‘𝑚))))
165 oveq1 6556 . . . . . . . . . 10 ((seq𝑀( + , 𝐹)‘(𝐺𝑚)) = (seq1( + , 𝐻)‘𝑚) → ((seq𝑀( + , 𝐹)‘(𝐺𝑚)) + (𝐻‘(𝑚 + 1))) = ((seq1( + , 𝐻)‘𝑚) + (𝐻‘(𝑚 + 1))))
166 simpll 786 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → 𝜑)
167 seqcoll.1b . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑆) → (𝑘 + 𝑍) = 𝑘)
168166, 167sylan 487 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) ∧ 𝑘𝑆) → (𝑘 + 𝑍) = 𝑘)
16934ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → 𝐴 ⊆ (ℤ𝑀))
17039ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → 𝐺:(1...(#‘𝐴))⟶𝐴)
171170, 162ffvelrnd 6268 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺𝑚) ∈ 𝐴)
172169, 171sseldd 3569 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺𝑚) ∈ (ℤ𝑀))
173 nnre 10904 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
174173ad2antlr 759 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → 𝑚 ∈ ℝ)
175174ltp1d 10833 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → 𝑚 < (𝑚 + 1))
17635ad2antrr 758 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → 𝐺 Isom < , < ((1...(#‘𝐴)), 𝐴))
177 simpr 476 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝑚 + 1) ∈ (1...(#‘𝐴)))
178 isorel 6476 . . . . . . . . . . . . . . . . . 18 ((𝐺 Isom < , < ((1...(#‘𝐴)), 𝐴) ∧ (𝑚 ∈ (1...(#‘𝐴)) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴)))) → (𝑚 < (𝑚 + 1) ↔ (𝐺𝑚) < (𝐺‘(𝑚 + 1))))
179176, 162, 177, 178syl12anc 1316 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝑚 < (𝑚 + 1) ↔ (𝐺𝑚) < (𝐺‘(𝑚 + 1))))
180175, 179mpbid 221 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺𝑚) < (𝐺‘(𝑚 + 1)))
181 eluzelz 11573 . . . . . . . . . . . . . . . . . 18 ((𝐺𝑚) ∈ (ℤ𝑀) → (𝐺𝑚) ∈ ℤ)
182172, 181syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺𝑚) ∈ ℤ)
183170, 177ffvelrnd 6268 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ 𝐴)
184169, 183sseldd 3569 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ (ℤ𝑀))
185 eluzelz 11573 . . . . . . . . . . . . . . . . . 18 ((𝐺‘(𝑚 + 1)) ∈ (ℤ𝑀) → (𝐺‘(𝑚 + 1)) ∈ ℤ)
186184, 185syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ ℤ)
187 zltlem1 11307 . . . . . . . . . . . . . . . . 17 (((𝐺𝑚) ∈ ℤ ∧ (𝐺‘(𝑚 + 1)) ∈ ℤ) → ((𝐺𝑚) < (𝐺‘(𝑚 + 1)) ↔ (𝐺𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1)))
188182, 186, 187syl2anc 691 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((𝐺𝑚) < (𝐺‘(𝑚 + 1)) ↔ (𝐺𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1)))
189180, 188mpbid 221 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1))
190 peano2zm 11297 . . . . . . . . . . . . . . . . 17 ((𝐺‘(𝑚 + 1)) ∈ ℤ → ((𝐺‘(𝑚 + 1)) − 1) ∈ ℤ)
191186, 190syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ∈ ℤ)
192 eluz 11577 . . . . . . . . . . . . . . . 16 (((𝐺𝑚) ∈ ℤ ∧ ((𝐺‘(𝑚 + 1)) − 1) ∈ ℤ) → (((𝐺‘(𝑚 + 1)) − 1) ∈ (ℤ‘(𝐺𝑚)) ↔ (𝐺𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1)))
193182, 191, 192syl2anc 691 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (((𝐺‘(𝑚 + 1)) − 1) ∈ (ℤ‘(𝐺𝑚)) ↔ (𝐺𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1)))
194189, 193mpbird 246 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ∈ (ℤ‘(𝐺𝑚)))
195191zred 11358 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ∈ ℝ)
196186zred 11358 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ ℝ)
19784ad2antrr 758 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘(#‘𝐴)) ∈ ℝ)
198196lem1d 10836 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ≤ (𝐺‘(𝑚 + 1)))
199 elfzle2 12216 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 + 1) ∈ (1...(#‘𝐴)) → (𝑚 + 1) ≤ (#‘𝐴))
200199adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝑚 + 1) ≤ (#‘𝐴))
20154ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (1...(#‘𝐴)) ⊆ ℝ*)
20258ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → 𝐴 ⊆ ℝ*)
20360ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (#‘𝐴) ∈ (1...(#‘𝐴)))
204 leisorel 13101 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 Isom < , < ((1...(#‘𝐴)), 𝐴) ∧ ((1...(#‘𝐴)) ⊆ ℝ*𝐴 ⊆ ℝ*) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ (#‘𝐴) ∈ (1...(#‘𝐴)))) → ((𝑚 + 1) ≤ (#‘𝐴) ↔ (𝐺‘(𝑚 + 1)) ≤ (𝐺‘(#‘𝐴))))
205176, 201, 202, 177, 203, 204syl122anc 1327 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((𝑚 + 1) ≤ (#‘𝐴) ↔ (𝐺‘(𝑚 + 1)) ≤ (𝐺‘(#‘𝐴))))
206200, 205mpbid 221 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘(𝑚 + 1)) ≤ (𝐺‘(#‘𝐴)))
207195, 196, 197, 198, 206letrd 10073 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ≤ (𝐺‘(#‘𝐴)))
20867ad2antrr 758 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘(#‘𝐴)) ∈ ℤ)
209 eluz 11577 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐺‘(𝑚 + 1)) − 1) ∈ ℤ ∧ (𝐺‘(#‘𝐴)) ∈ ℤ) → ((𝐺‘(#‘𝐴)) ∈ (ℤ‘((𝐺‘(𝑚 + 1)) − 1)) ↔ ((𝐺‘(𝑚 + 1)) − 1) ≤ (𝐺‘(#‘𝐴))))
210191, 208, 209syl2anc 691 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((𝐺‘(#‘𝐴)) ∈ (ℤ‘((𝐺‘(𝑚 + 1)) − 1)) ↔ ((𝐺‘(𝑚 + 1)) − 1) ≤ (𝐺‘(#‘𝐴))))
211207, 210mpbird 246 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘(#‘𝐴)) ∈ (ℤ‘((𝐺‘(𝑚 + 1)) − 1)))
212 uztrn 11580 . . . . . . . . . . . . . . . . . . 19 (((𝐺‘(#‘𝐴)) ∈ (ℤ‘((𝐺‘(𝑚 + 1)) − 1)) ∧ ((𝐺‘(𝑚 + 1)) − 1) ∈ (ℤ‘(𝐺𝑚))) → (𝐺‘(#‘𝐴)) ∈ (ℤ‘(𝐺𝑚)))
213211, 194, 212syl2anc 691 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘(#‘𝐴)) ∈ (ℤ‘(𝐺𝑚)))
214 fzss2 12252 . . . . . . . . . . . . . . . . . 18 ((𝐺‘(#‘𝐴)) ∈ (ℤ‘(𝐺𝑚)) → (𝑀...(𝐺𝑚)) ⊆ (𝑀...(𝐺‘(#‘𝐴))))
215213, 214syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝑀...(𝐺𝑚)) ⊆ (𝑀...(𝐺‘(#‘𝐴))))
216215sselda 3568 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) ∧ 𝑘 ∈ (𝑀...(𝐺𝑚))) → 𝑘 ∈ (𝑀...(𝐺‘(#‘𝐴))))
217166, 74sylan 487 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) ∧ 𝑘 ∈ (𝑀...(𝐺‘(#‘𝐴)))) → (𝐹𝑘) ∈ 𝑆)
218216, 217syldan 486 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) ∧ 𝑘 ∈ (𝑀...(𝐺𝑚))) → (𝐹𝑘) ∈ 𝑆)
219 seqcoll.c . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘𝑆𝑛𝑆)) → (𝑘 + 𝑛) ∈ 𝑆)
220166, 219sylan 487 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) ∧ (𝑘𝑆𝑛𝑆)) → (𝑘 + 𝑛) ∈ 𝑆)
221172, 218, 220seqcl 12683 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (seq𝑀( + , 𝐹)‘(𝐺𝑚)) ∈ 𝑆)
222 simplll 794 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) ∧ 𝑘 ∈ (((𝐺𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → 𝜑)
223 elfzuz 12209 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (((𝐺𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → 𝑘 ∈ (ℤ‘((𝐺𝑚) + 1)))
224 peano2uz 11617 . . . . . . . . . . . . . . . . . . 19 ((𝐺𝑚) ∈ (ℤ𝑀) → ((𝐺𝑚) + 1) ∈ (ℤ𝑀))
225172, 224syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((𝐺𝑚) + 1) ∈ (ℤ𝑀))
226 uztrn 11580 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ (ℤ‘((𝐺𝑚) + 1)) ∧ ((𝐺𝑚) + 1) ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
227223, 225, 226syl2anr 494 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) ∧ 𝑘 ∈ (((𝐺𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → 𝑘 ∈ (ℤ𝑀))
228 elfzuz3 12210 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (((𝐺𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → ((𝐺‘(𝑚 + 1)) − 1) ∈ (ℤ𝑘))
229 uztrn 11580 . . . . . . . . . . . . . . . . . 18 (((𝐺‘(#‘𝐴)) ∈ (ℤ‘((𝐺‘(𝑚 + 1)) − 1)) ∧ ((𝐺‘(𝑚 + 1)) − 1) ∈ (ℤ𝑘)) → (𝐺‘(#‘𝐴)) ∈ (ℤ𝑘))
230211, 228, 229syl2an 493 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) ∧ 𝑘 ∈ (((𝐺𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → (𝐺‘(#‘𝐴)) ∈ (ℤ𝑘))
231 elfzuzb 12207 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝑀...(𝐺‘(#‘𝐴))) ↔ (𝑘 ∈ (ℤ𝑀) ∧ (𝐺‘(#‘𝐴)) ∈ (ℤ𝑘)))
232227, 230, 231sylanbrc 695 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) ∧ 𝑘 ∈ (((𝐺𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → 𝑘 ∈ (𝑀...(𝐺‘(#‘𝐴))))
233 elfzle1 12215 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (((𝐺𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → ((𝐺𝑚) + 1) ≤ 𝑘)
234 elfzle2 12216 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (((𝐺𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))
235233, 234jca 553 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (((𝐺𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → (((𝐺𝑚) + 1) ≤ 𝑘𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)))
236155ad2antlr 759 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → 𝑚 ∈ ℤ)
237101ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → 𝐺:𝐴⟶(1...(#‘𝐴)))
238 simprr 792 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → 𝑘𝐴)
239237, 238ffvelrnd 6268 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → (𝐺𝑘) ∈ (1...(#‘𝐴)))
240 elfzelz 12213 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺𝑘) ∈ (1...(#‘𝐴)) → (𝐺𝑘) ∈ ℤ)
241239, 240syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → (𝐺𝑘) ∈ ℤ)
242 btwnnz 11329 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚 ∈ ℤ ∧ 𝑚 < (𝐺𝑘) ∧ (𝐺𝑘) < (𝑚 + 1)) → ¬ (𝐺𝑘) ∈ ℤ)
2432423expib 1260 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℤ → ((𝑚 < (𝐺𝑘) ∧ (𝐺𝑘) < (𝑚 + 1)) → ¬ (𝐺𝑘) ∈ ℤ))
244243con2d 128 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ℤ → ((𝐺𝑘) ∈ ℤ → ¬ (𝑚 < (𝐺𝑘) ∧ (𝐺𝑘) < (𝑚 + 1))))
245236, 241, 244sylc 63 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → ¬ (𝑚 < (𝐺𝑘) ∧ (𝐺𝑘) < (𝑚 + 1)))
24635ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → 𝐺 Isom < , < ((1...(#‘𝐴)), 𝐴))
247162adantrr 749 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → 𝑚 ∈ (1...(#‘𝐴)))
248 isorel 6476 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 Isom < , < ((1...(#‘𝐴)), 𝐴) ∧ (𝑚 ∈ (1...(#‘𝐴)) ∧ (𝐺𝑘) ∈ (1...(#‘𝐴)))) → (𝑚 < (𝐺𝑘) ↔ (𝐺𝑚) < (𝐺‘(𝐺𝑘))))
249246, 247, 239, 248syl12anc 1316 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → (𝑚 < (𝐺𝑘) ↔ (𝐺𝑚) < (𝐺‘(𝐺𝑘))))
25037ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → 𝐺:(1...(#‘𝐴))–1-1-onto𝐴)
251250, 238, 113syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → (𝐺‘(𝐺𝑘)) = 𝑘)
252251breq2d 4595 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → ((𝐺𝑚) < (𝐺‘(𝐺𝑘)) ↔ (𝐺𝑚) < 𝑘))
253182adantrr 749 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → (𝐺𝑚) ∈ ℤ)
25434ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → 𝐴 ⊆ (ℤ𝑀))
255254, 238sseldd 3569 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → 𝑘 ∈ (ℤ𝑀))
256 eluzelz 11573 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
257255, 256syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → 𝑘 ∈ ℤ)
258 zltp1le 11304 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐺𝑚) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝐺𝑚) < 𝑘 ↔ ((𝐺𝑚) + 1) ≤ 𝑘))
259253, 257, 258syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → ((𝐺𝑚) < 𝑘 ↔ ((𝐺𝑚) + 1) ≤ 𝑘))
260249, 252, 2593bitrd 293 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → (𝑚 < (𝐺𝑘) ↔ ((𝐺𝑚) + 1) ≤ 𝑘))
261177adantrr 749 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → (𝑚 + 1) ∈ (1...(#‘𝐴)))
262 isorel 6476 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 Isom < , < ((1...(#‘𝐴)), 𝐴) ∧ ((𝐺𝑘) ∈ (1...(#‘𝐴)) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴)))) → ((𝐺𝑘) < (𝑚 + 1) ↔ (𝐺‘(𝐺𝑘)) < (𝐺‘(𝑚 + 1))))
263246, 239, 261, 262syl12anc 1316 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → ((𝐺𝑘) < (𝑚 + 1) ↔ (𝐺‘(𝐺𝑘)) < (𝐺‘(𝑚 + 1))))
264251breq1d 4593 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → ((𝐺‘(𝐺𝑘)) < (𝐺‘(𝑚 + 1)) ↔ 𝑘 < (𝐺‘(𝑚 + 1))))
265186adantrr 749 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → (𝐺‘(𝑚 + 1)) ∈ ℤ)
266 zltlem1 11307 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑘 ∈ ℤ ∧ (𝐺‘(𝑚 + 1)) ∈ ℤ) → (𝑘 < (𝐺‘(𝑚 + 1)) ↔ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)))
267257, 265, 266syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → (𝑘 < (𝐺‘(𝑚 + 1)) ↔ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)))
268263, 264, 2673bitrd 293 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → ((𝐺𝑘) < (𝑚 + 1) ↔ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)))
269260, 268anbi12d 743 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → ((𝑚 < (𝐺𝑘) ∧ (𝐺𝑘) < (𝑚 + 1)) ↔ (((𝐺𝑚) + 1) ≤ 𝑘𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))))
270245, 269mtbid 313 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘𝐴)) → ¬ (((𝐺𝑚) + 1) ≤ 𝑘𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)))
271270expr 641 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝑘𝐴 → ¬ (((𝐺𝑚) + 1) ≤ 𝑘𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))))
272271con2d 128 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((((𝐺𝑚) + 1) ≤ 𝑘𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)) → ¬ 𝑘𝐴))
273235, 272syl5 33 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝑘 ∈ (((𝐺𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → ¬ 𝑘𝐴))
274273imp 444 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) ∧ 𝑘 ∈ (((𝐺𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → ¬ 𝑘𝐴)
275232, 274eldifd 3551 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) ∧ 𝑘 ∈ (((𝐺𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → 𝑘 ∈ ((𝑀...(𝐺‘(#‘𝐴))) ∖ 𝐴))
276222, 275, 126syl2anc 691 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) ∧ 𝑘 ∈ (((𝐺𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → (𝐹𝑘) = 𝑍)
277168, 172, 194, 221, 276seqid2 12709 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (seq𝑀( + , 𝐹)‘(𝐺𝑚)) = (seq𝑀( + , 𝐹)‘((𝐺‘(𝑚 + 1)) − 1)))
278277oveq1d 6564 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((seq𝑀( + , 𝐹)‘(𝐺𝑚)) + (𝐹‘(𝐺‘(𝑚 + 1)))) = ((seq𝑀( + , 𝐹)‘((𝐺‘(𝑚 + 1)) − 1)) + (𝐹‘(𝐺‘(𝑚 + 1)))))
279 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑛 = (𝑚 + 1) → (𝐻𝑛) = (𝐻‘(𝑚 + 1)))
280 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (𝑚 + 1) → (𝐺𝑛) = (𝐺‘(𝑚 + 1)))
281280fveq2d 6107 . . . . . . . . . . . . . . . . . 18 (𝑛 = (𝑚 + 1) → (𝐹‘(𝐺𝑛)) = (𝐹‘(𝐺‘(𝑚 + 1))))
282279, 281eqeq12d 2625 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑚 + 1) → ((𝐻𝑛) = (𝐹‘(𝐺𝑛)) ↔ (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1)))))
283282imbi2d 329 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐻𝑛) = (𝐹‘(𝐺𝑛))) ↔ (𝜑 → (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1))))))
284283, 142vtoclga 3245 . . . . . . . . . . . . . . 15 ((𝑚 + 1) ∈ (1...(#‘𝐴)) → (𝜑 → (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1)))))
285284impcom 445 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1))))
286285adantlr 747 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1))))
287286oveq2d 6565 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((seq𝑀( + , 𝐹)‘(𝐺𝑚)) + (𝐻‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘(𝐺𝑚)) + (𝐹‘(𝐺‘(𝑚 + 1)))))
28894ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → 𝑀 ∈ ℤ)
289186zcnd 11359 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ ℂ)
290 ax-1cn 9873 . . . . . . . . . . . . . . 15 1 ∈ ℂ
291 npcan 10169 . . . . . . . . . . . . . . 15 (((𝐺‘(𝑚 + 1)) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐺‘(𝑚 + 1)) − 1) + 1) = (𝐺‘(𝑚 + 1)))
292289, 290, 291sylancl 693 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (((𝐺‘(𝑚 + 1)) − 1) + 1) = (𝐺‘(𝑚 + 1)))
293 uztrn 11580 . . . . . . . . . . . . . . . 16 ((((𝐺‘(𝑚 + 1)) − 1) ∈ (ℤ‘(𝐺𝑚)) ∧ (𝐺𝑚) ∈ (ℤ𝑀)) → ((𝐺‘(𝑚 + 1)) − 1) ∈ (ℤ𝑀))
294194, 172, 293syl2anc 691 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ∈ (ℤ𝑀))
295 eluzp1p1 11589 . . . . . . . . . . . . . . 15 (((𝐺‘(𝑚 + 1)) − 1) ∈ (ℤ𝑀) → (((𝐺‘(𝑚 + 1)) − 1) + 1) ∈ (ℤ‘(𝑀 + 1)))
296294, 295syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (((𝐺‘(𝑚 + 1)) − 1) + 1) ∈ (ℤ‘(𝑀 + 1)))
297292, 296eqeltrrd 2689 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ (ℤ‘(𝑀 + 1)))
298 seqm1 12680 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ (𝐺‘(𝑚 + 1)) ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘((𝐺‘(𝑚 + 1)) − 1)) + (𝐹‘(𝐺‘(𝑚 + 1)))))
299288, 297, 298syl2anc 691 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘((𝐺‘(𝑚 + 1)) − 1)) + (𝐹‘(𝐺‘(𝑚 + 1)))))
300278, 287, 2993eqtr4rd 2655 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘(𝐺𝑚)) + (𝐻‘(𝑚 + 1))))
301 seqp1 12678 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ‘1) → (seq1( + , 𝐻)‘(𝑚 + 1)) = ((seq1( + , 𝐻)‘𝑚) + (𝐻‘(𝑚 + 1))))
302154, 301syl 17 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (seq1( + , 𝐻)‘(𝑚 + 1)) = ((seq1( + , 𝐻)‘𝑚) + (𝐻‘(𝑚 + 1))))
303300, 302eqeq12d 2625 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)) ↔ ((seq𝑀( + , 𝐹)‘(𝐺𝑚)) + (𝐻‘(𝑚 + 1))) = ((seq1( + , 𝐻)‘𝑚) + (𝐻‘(𝑚 + 1)))))
304165, 303syl5ibr 235 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((seq𝑀( + , 𝐹)‘(𝐺𝑚)) = (seq1( + , 𝐻)‘𝑚) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1))))
305304ex 449 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + 1) ∈ (1...(#‘𝐴)) → ((seq𝑀( + , 𝐹)‘(𝐺𝑚)) = (seq1( + , 𝐻)‘𝑚) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))))
306305a2d 29 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (((𝑚 + 1) ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺𝑚)) = (seq1( + , 𝐻)‘𝑚)) → ((𝑚 + 1) ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))))
307164, 306syld 46 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑚 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺𝑚)) = (seq1( + , 𝐻)‘𝑚)) → ((𝑚 + 1) ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))))
308307expcom 450 . . . . 5 (𝑚 ∈ ℕ → (𝜑 → ((𝑚 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺𝑚)) = (seq1( + , 𝐻)‘𝑚)) → ((𝑚 + 1) ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1))))))
309308a2d 29 . . . 4 (𝑚 ∈ ℕ → ((𝜑 → (𝑚 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺𝑚)) = (seq1( + , 𝐻)‘𝑚))) → (𝜑 → ((𝑚 + 1) ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1))))))
31010, 17, 24, 31, 151, 309nnind 10915 . . 3 (𝑁 ∈ ℕ → (𝜑 → (𝑁 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺𝑁)) = (seq1( + , 𝐻)‘𝑁))))
3113, 310mpcom 37 . 2 (𝜑 → (𝑁 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺𝑁)) = (seq1( + , 𝐻)‘𝑁)))
3121, 311mpd 15 1 (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺𝑁)) = (seq1( + , 𝐻)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  cdif 3537  wss 3540   class class class wbr 4583  ccnv 5037  cres 5040  wf 5800  1-1-ontowf1o 5803  cfv 5804   Isom wiso 5805  (class class class)co 6549  cc 9813  cr 9814  1c1 9816   + caddc 9818  *cxr 9952   < clt 9953  cle 9954  cmin 10145  cn 10897  cz 11254  cuz 11563  ...cfz 12197  seqcseq 12663  #chash 12979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664
This theorem is referenced by:  seqcoll2  13106  summolem2a  14293  prodmolem2a  14503
  Copyright terms: Public domain W3C validator