Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadss Structured version   Visualization version   GIF version

 Description: Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015.) (Proof shortened by Mario Carneiro, 26-Apr-2016.)
Hypothesis
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
Assertion
Ref Expression
dyadss (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) → 𝐷𝐶))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐴,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dyadss
StepHypRef Expression
1 simpr 476 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)))
2 simpllr 795 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐵 ∈ ℤ)
3 simplrr 797 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐷 ∈ ℕ0)
4 dyadmbl.1 . . . . . . . . . . 11 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
54dyadval 23166 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ0) → (𝐵𝐹𝐷) = ⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
62, 3, 5syl2anc 691 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (𝐵𝐹𝐷) = ⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
76fveq2d 6107 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ([,]‘(𝐵𝐹𝐷)) = ([,]‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩))
8 df-ov 6552 . . . . . . . 8 ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) = ([,]‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
97, 8syl6eqr 2662 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ([,]‘(𝐵𝐹𝐷)) = ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))))
102zred 11358 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐵 ∈ ℝ)
11 2nn 11062 . . . . . . . . . 10 2 ∈ ℕ
12 nnexpcl 12735 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 𝐷 ∈ ℕ0) → (2↑𝐷) ∈ ℕ)
1311, 3, 12sylancr 694 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (2↑𝐷) ∈ ℕ)
1410, 13nndivred 10946 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (𝐵 / (2↑𝐷)) ∈ ℝ)
15 peano2re 10088 . . . . . . . . . 10 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
1610, 15syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (𝐵 + 1) ∈ ℝ)
1716, 13nndivred 10946 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ)
18 iccssre 12126 . . . . . . . 8 (((𝐵 / (2↑𝐷)) ∈ ℝ ∧ ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ) → ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) ⊆ ℝ)
1914, 17, 18syl2anc 691 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) ⊆ ℝ)
209, 19eqsstrd 3602 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ([,]‘(𝐵𝐹𝐷)) ⊆ ℝ)
21 ovolss 23060 . . . . . 6 ((([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∧ ([,]‘(𝐵𝐹𝐷)) ⊆ ℝ) → (vol*‘([,]‘(𝐴𝐹𝐶))) ≤ (vol*‘([,]‘(𝐵𝐹𝐷))))
221, 20, 21syl2anc 691 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (vol*‘([,]‘(𝐴𝐹𝐶))) ≤ (vol*‘([,]‘(𝐵𝐹𝐷))))
23 simplll 794 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐴 ∈ ℤ)
24 simplrl 796 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐶 ∈ ℕ0)
254dyadovol 23167 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (vol*‘([,]‘(𝐴𝐹𝐶))) = (1 / (2↑𝐶)))
2623, 24, 25syl2anc 691 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (vol*‘([,]‘(𝐴𝐹𝐶))) = (1 / (2↑𝐶)))
274dyadovol 23167 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ0) → (vol*‘([,]‘(𝐵𝐹𝐷))) = (1 / (2↑𝐷)))
282, 3, 27syl2anc 691 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (vol*‘([,]‘(𝐵𝐹𝐷))) = (1 / (2↑𝐷)))
2922, 26, 283brtr3d 4614 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (1 / (2↑𝐶)) ≤ (1 / (2↑𝐷)))
30 nnexpcl 12735 . . . . . 6 ((2 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (2↑𝐶) ∈ ℕ)
3111, 24, 30sylancr 694 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (2↑𝐶) ∈ ℕ)
32 nnre 10904 . . . . . . 7 ((2↑𝐷) ∈ ℕ → (2↑𝐷) ∈ ℝ)
33 nngt0 10926 . . . . . . 7 ((2↑𝐷) ∈ ℕ → 0 < (2↑𝐷))
3432, 33jca 553 . . . . . 6 ((2↑𝐷) ∈ ℕ → ((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷)))
35 nnre 10904 . . . . . . 7 ((2↑𝐶) ∈ ℕ → (2↑𝐶) ∈ ℝ)
36 nngt0 10926 . . . . . . 7 ((2↑𝐶) ∈ ℕ → 0 < (2↑𝐶))
3735, 36jca 553 . . . . . 6 ((2↑𝐶) ∈ ℕ → ((2↑𝐶) ∈ ℝ ∧ 0 < (2↑𝐶)))
38 lerec 10785 . . . . . 6 ((((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷)) ∧ ((2↑𝐶) ∈ ℝ ∧ 0 < (2↑𝐶))) → ((2↑𝐷) ≤ (2↑𝐶) ↔ (1 / (2↑𝐶)) ≤ (1 / (2↑𝐷))))
3934, 37, 38syl2an 493 . . . . 5 (((2↑𝐷) ∈ ℕ ∧ (2↑𝐶) ∈ ℕ) → ((2↑𝐷) ≤ (2↑𝐶) ↔ (1 / (2↑𝐶)) ≤ (1 / (2↑𝐷))))
4013, 31, 39syl2anc 691 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ((2↑𝐷) ≤ (2↑𝐶) ↔ (1 / (2↑𝐶)) ≤ (1 / (2↑𝐷))))
4129, 40mpbird 246 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (2↑𝐷) ≤ (2↑𝐶))
42 2re 10967 . . . . 5 2 ∈ ℝ
4342a1i 11 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 2 ∈ ℝ)
443nn0zd 11356 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐷 ∈ ℤ)
4524nn0zd 11356 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐶 ∈ ℤ)
46 1lt2 11071 . . . . 5 1 < 2
4746a1i 11 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 1 < 2)
4843, 44, 45, 47leexp2d 12901 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (𝐷𝐶 ↔ (2↑𝐷) ≤ (2↑𝐶)))
4941, 48mpbird 246 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐷𝐶)
5049ex 449 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) → 𝐷𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ⊆ wss 3540  ⟨cop 4131   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953   ≤ cle 9954   / cdiv 10563  ℕcn 10897  2c2 10947  ℕ0cn0 11169  ℤcz 11254  [,]cicc 12049  ↑cexp 12722  vol*covol 23038 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040 This theorem is referenced by:  dyadmaxlem  23171
 Copyright terms: Public domain W3C validator