MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmm0cl Structured version   Visualization version   GIF version

Theorem dsmm0cl 19903
Description: The all-zero vector is contained in the finite hull, since its support is empty and therefore finite. This theorem along with the next one effectively proves that the finite hull is a "submonoid", although that does not exist as a defined concept yet. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmcl.p 𝑃 = (𝑆Xs𝑅)
dsmmcl.h 𝐻 = (Base‘(𝑆m 𝑅))
dsmmcl.i (𝜑𝐼𝑊)
dsmmcl.s (𝜑𝑆𝑉)
dsmmcl.r (𝜑𝑅:𝐼⟶Mnd)
dsmm0cl.z 0 = (0g𝑃)
Assertion
Ref Expression
dsmm0cl (𝜑0𝐻)

Proof of Theorem dsmm0cl
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 dsmmcl.p . . . 4 𝑃 = (𝑆Xs𝑅)
2 dsmmcl.i . . . 4 (𝜑𝐼𝑊)
3 dsmmcl.s . . . 4 (𝜑𝑆𝑉)
4 dsmmcl.r . . . 4 (𝜑𝑅:𝐼⟶Mnd)
51, 2, 3, 4prdsmndd 17146 . . 3 (𝜑𝑃 ∈ Mnd)
6 eqid 2610 . . . 4 (Base‘𝑃) = (Base‘𝑃)
7 dsmm0cl.z . . . 4 0 = (0g𝑃)
86, 7mndidcl 17131 . . 3 (𝑃 ∈ Mnd → 0 ∈ (Base‘𝑃))
95, 8syl 17 . 2 (𝜑0 ∈ (Base‘𝑃))
101, 2, 3, 4prds0g 17147 . . . . . . . . . 10 (𝜑 → (0g𝑅) = (0g𝑃))
1110, 7syl6eqr 2662 . . . . . . . . 9 (𝜑 → (0g𝑅) = 0 )
1211adantr 480 . . . . . . . 8 ((𝜑𝑎𝐼) → (0g𝑅) = 0 )
1312fveq1d 6105 . . . . . . 7 ((𝜑𝑎𝐼) → ((0g𝑅)‘𝑎) = ( 0𝑎))
14 ffn 5958 . . . . . . . . 9 (𝑅:𝐼⟶Mnd → 𝑅 Fn 𝐼)
154, 14syl 17 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
16 fvco2 6183 . . . . . . . 8 ((𝑅 Fn 𝐼𝑎𝐼) → ((0g𝑅)‘𝑎) = (0g‘(𝑅𝑎)))
1715, 16sylan 487 . . . . . . 7 ((𝜑𝑎𝐼) → ((0g𝑅)‘𝑎) = (0g‘(𝑅𝑎)))
1813, 17eqtr3d 2646 . . . . . 6 ((𝜑𝑎𝐼) → ( 0𝑎) = (0g‘(𝑅𝑎)))
19 nne 2786 . . . . . 6 (¬ ( 0𝑎) ≠ (0g‘(𝑅𝑎)) ↔ ( 0𝑎) = (0g‘(𝑅𝑎)))
2018, 19sylibr 223 . . . . 5 ((𝜑𝑎𝐼) → ¬ ( 0𝑎) ≠ (0g‘(𝑅𝑎)))
2120ralrimiva 2949 . . . 4 (𝜑 → ∀𝑎𝐼 ¬ ( 0𝑎) ≠ (0g‘(𝑅𝑎)))
22 rabeq0 3911 . . . 4 ({𝑎𝐼 ∣ ( 0𝑎) ≠ (0g‘(𝑅𝑎))} = ∅ ↔ ∀𝑎𝐼 ¬ ( 0𝑎) ≠ (0g‘(𝑅𝑎)))
2321, 22sylibr 223 . . 3 (𝜑 → {𝑎𝐼 ∣ ( 0𝑎) ≠ (0g‘(𝑅𝑎))} = ∅)
24 0fin 8073 . . 3 ∅ ∈ Fin
2523, 24syl6eqel 2696 . 2 (𝜑 → {𝑎𝐼 ∣ ( 0𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
26 eqid 2610 . . 3 (𝑆m 𝑅) = (𝑆m 𝑅)
27 dsmmcl.h . . 3 𝐻 = (Base‘(𝑆m 𝑅))
281, 26, 6, 27, 2, 15dsmmelbas 19902 . 2 (𝜑 → ( 0𝐻 ↔ ( 0 ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ ( 0𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
299, 25, 28mpbir2and 959 1 (𝜑0𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  {crab 2900  c0 3874  ccom 5042   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  Fincfn 7841  Basecbs 15695  0gc0g 15923  Xscprds 15929  Mndcmnd 17117  m cdsmm 19894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-prds 15931  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-dsmm 19895
This theorem is referenced by:  dsmmsubg  19906
  Copyright terms: Public domain W3C validator