MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmelbas Structured version   Visualization version   GIF version

Theorem dsmmelbas 19902
Description: Membership in the finitely supported hull of a structure product in terms of the index set. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmelbas.p 𝑃 = (𝑆Xs𝑅)
dsmmelbas.c 𝐶 = (𝑆m 𝑅)
dsmmelbas.b 𝐵 = (Base‘𝑃)
dsmmelbas.h 𝐻 = (Base‘𝐶)
dsmmelbas.i (𝜑𝐼𝑉)
dsmmelbas.r (𝜑𝑅 Fn 𝐼)
Assertion
Ref Expression
dsmmelbas (𝜑 → (𝑋𝐻 ↔ (𝑋𝐵 ∧ {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
Distinct variable groups:   𝑆,𝑎   𝑅,𝑎   𝑋,𝑎   𝐼,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝑃(𝑎)   𝐻(𝑎)   𝑉(𝑎)

Proof of Theorem dsmmelbas
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 dsmmelbas.r . . . . . 6 (𝜑𝑅 Fn 𝐼)
2 dsmmelbas.i . . . . . 6 (𝜑𝐼𝑉)
3 fnex 6386 . . . . . 6 ((𝑅 Fn 𝐼𝐼𝑉) → 𝑅 ∈ V)
41, 2, 3syl2anc 691 . . . . 5 (𝜑𝑅 ∈ V)
5 eqid 2610 . . . . . 6 {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin} = {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin}
65dsmmbase 19898 . . . . 5 (𝑅 ∈ V → {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
74, 6syl 17 . . . 4 (𝜑 → {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
8 dsmmelbas.h . . . . 5 𝐻 = (Base‘𝐶)
9 dsmmelbas.c . . . . . 6 𝐶 = (𝑆m 𝑅)
109fveq2i 6106 . . . . 5 (Base‘𝐶) = (Base‘(𝑆m 𝑅))
118, 10eqtri 2632 . . . 4 𝐻 = (Base‘(𝑆m 𝑅))
127, 11syl6reqr 2663 . . 3 (𝜑𝐻 = {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin})
1312eleq2d 2673 . 2 (𝜑 → (𝑋𝐻𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin}))
14 fveq1 6102 . . . . . . 7 (𝑏 = 𝑋 → (𝑏𝑎) = (𝑋𝑎))
1514neeq1d 2841 . . . . . 6 (𝑏 = 𝑋 → ((𝑏𝑎) ≠ (0g‘(𝑅𝑎)) ↔ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))))
1615rabbidv 3164 . . . . 5 (𝑏 = 𝑋 → {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} = {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))})
1716eleq1d 2672 . . . 4 (𝑏 = 𝑋 → ({𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin ↔ {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin))
1817elrab 3331 . . 3 (𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin} ↔ (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ∧ {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin))
19 dsmmelbas.b . . . . . . 7 𝐵 = (Base‘𝑃)
20 dsmmelbas.p . . . . . . . 8 𝑃 = (𝑆Xs𝑅)
2120fveq2i 6106 . . . . . . 7 (Base‘𝑃) = (Base‘(𝑆Xs𝑅))
2219, 21eqtr2i 2633 . . . . . 6 (Base‘(𝑆Xs𝑅)) = 𝐵
2322eleq2i 2680 . . . . 5 (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ↔ 𝑋𝐵)
2423a1i 11 . . . 4 (𝜑 → (𝑋 ∈ (Base‘(𝑆Xs𝑅)) ↔ 𝑋𝐵))
25 fndm 5904 . . . . . 6 (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼)
26 rabeq 3166 . . . . . 6 (dom 𝑅 = 𝐼 → {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} = {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))})
271, 25, 263syl 18 . . . . 5 (𝜑 → {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} = {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))})
2827eleq1d 2672 . . . 4 (𝜑 → ({𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin ↔ {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin))
2924, 28anbi12d 743 . . 3 (𝜑 → ((𝑋 ∈ (Base‘(𝑆Xs𝑅)) ∧ {𝑎 ∈ dom 𝑅 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin) ↔ (𝑋𝐵 ∧ {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
3018, 29syl5bb 271 . 2 (𝜑 → (𝑋 ∈ {𝑏 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑎 ∈ dom 𝑅 ∣ (𝑏𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin} ↔ (𝑋𝐵 ∧ {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
3113, 30bitrd 267 1 (𝜑 → (𝑋𝐻 ↔ (𝑋𝐵 ∧ {𝑎𝐼 ∣ (𝑋𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  {crab 2900  Vcvv 3173  dom cdm 5038   Fn wfn 5799  cfv 5804  (class class class)co 6549  Fincfn 7841  Basecbs 15695  0gc0g 15923  Xscprds 15929  m cdsmm 19894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-prds 15931  df-dsmm 19895
This theorem is referenced by:  dsmm0cl  19903  dsmmacl  19904  dsmmsubg  19906  dsmmlss  19907
  Copyright terms: Public domain W3C validator