Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > decmul1OLD | Structured version Visualization version GIF version |
Description: Obsolete proof of decmul1 11461 as of 6-Sep-2021. (Contributed by AV, 22-Jul-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
decmul1.p | ⊢ 𝑃 ∈ ℕ0 |
decmul1.a | ⊢ 𝐴 ∈ ℕ0 |
decmul1.b | ⊢ 𝐵 ∈ ℕ0 |
decmul1.n | ⊢ 𝑁 = ;𝐴𝐵 |
decmul1.0 | ⊢ 𝐷 ∈ ℕ0 |
decmul1.c | ⊢ (𝐴 · 𝑃) = 𝐶 |
decmul1.d | ⊢ (𝐵 · 𝑃) = 𝐷 |
Ref | Expression |
---|---|
decmul1OLD | ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0OLD 11194 | . . 3 ⊢ 10 ∈ ℕ0 | |
2 | decmul1.p | . . 3 ⊢ 𝑃 ∈ ℕ0 | |
3 | decmul1.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
4 | decmul1.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
5 | decmul1.n | . . . 4 ⊢ 𝑁 = ;𝐴𝐵 | |
6 | dfdecOLD 11371 | . . . 4 ⊢ ;𝐴𝐵 = ((10 · 𝐴) + 𝐵) | |
7 | 5, 6 | eqtri 2632 | . . 3 ⊢ 𝑁 = ((10 · 𝐴) + 𝐵) |
8 | decmul1.0 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
9 | 0nn0 11184 | . . 3 ⊢ 0 ∈ ℕ0 | |
10 | 3, 2 | nn0mulcli 11208 | . . . . . 6 ⊢ (𝐴 · 𝑃) ∈ ℕ0 |
11 | 10 | nn0cni 11181 | . . . . 5 ⊢ (𝐴 · 𝑃) ∈ ℂ |
12 | 11 | addid1i 10102 | . . . 4 ⊢ ((𝐴 · 𝑃) + 0) = (𝐴 · 𝑃) |
13 | decmul1.c | . . . 4 ⊢ (𝐴 · 𝑃) = 𝐶 | |
14 | 12, 13 | eqtri 2632 | . . 3 ⊢ ((𝐴 · 𝑃) + 0) = 𝐶 |
15 | decmul1.d | . . . . 5 ⊢ (𝐵 · 𝑃) = 𝐷 | |
16 | 8 | nn0cni 11181 | . . . . . 6 ⊢ 𝐷 ∈ ℂ |
17 | 16 | addid2i 10103 | . . . . 5 ⊢ (0 + 𝐷) = 𝐷 |
18 | 15, 17 | eqtr4i 2635 | . . . 4 ⊢ (𝐵 · 𝑃) = (0 + 𝐷) |
19 | 1 | nn0cni 11181 | . . . . . . 7 ⊢ 10 ∈ ℂ |
20 | 19 | mul01i 10105 | . . . . . 6 ⊢ (10 · 0) = 0 |
21 | 20 | eqcomi 2619 | . . . . 5 ⊢ 0 = (10 · 0) |
22 | 21 | oveq1i 6559 | . . . 4 ⊢ (0 + 𝐷) = ((10 · 0) + 𝐷) |
23 | 18, 22 | eqtri 2632 | . . 3 ⊢ (𝐵 · 𝑃) = ((10 · 0) + 𝐷) |
24 | 1, 2, 3, 4, 7, 8, 9, 14, 23 | nummul1c 11438 | . 2 ⊢ (𝑁 · 𝑃) = ((10 · 𝐶) + 𝐷) |
25 | dfdecOLD 11371 | . 2 ⊢ ;𝐶𝐷 = ((10 · 𝐶) + 𝐷) | |
26 | 24, 25 | eqtr4i 2635 | 1 ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 ∈ wcel 1977 (class class class)co 6549 0cc0 9815 + caddc 9818 · cmul 9820 10c10 10955 ℕ0cn0 11169 ;cdc 11369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-ltxr 9958 df-sub 10147 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-10OLD 10964 df-n0 11170 df-dec 11370 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |