Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  decmul1OLD Structured version   Visualization version   GIF version

Theorem decmul1OLD 11462
 Description: Obsolete proof of decmul1 11461 as of 6-Sep-2021. (Contributed by AV, 22-Jul-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
decmul1.p 𝑃 ∈ ℕ0
decmul1.a 𝐴 ∈ ℕ0
decmul1.b 𝐵 ∈ ℕ0
decmul1.n 𝑁 = 𝐴𝐵
decmul1.0 𝐷 ∈ ℕ0
decmul1.c (𝐴 · 𝑃) = 𝐶
decmul1.d (𝐵 · 𝑃) = 𝐷
Assertion
Ref Expression
decmul1OLD (𝑁 · 𝑃) = 𝐶𝐷

Proof of Theorem decmul1OLD
StepHypRef Expression
1 10nn0OLD 11194 . . 3 10 ∈ ℕ0
2 decmul1.p . . 3 𝑃 ∈ ℕ0
3 decmul1.a . . 3 𝐴 ∈ ℕ0
4 decmul1.b . . 3 𝐵 ∈ ℕ0
5 decmul1.n . . . 4 𝑁 = 𝐴𝐵
6 dfdecOLD 11371 . . . 4 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
75, 6eqtri 2632 . . 3 𝑁 = ((10 · 𝐴) + 𝐵)
8 decmul1.0 . . 3 𝐷 ∈ ℕ0
9 0nn0 11184 . . 3 0 ∈ ℕ0
103, 2nn0mulcli 11208 . . . . . 6 (𝐴 · 𝑃) ∈ ℕ0
1110nn0cni 11181 . . . . 5 (𝐴 · 𝑃) ∈ ℂ
1211addid1i 10102 . . . 4 ((𝐴 · 𝑃) + 0) = (𝐴 · 𝑃)
13 decmul1.c . . . 4 (𝐴 · 𝑃) = 𝐶
1412, 13eqtri 2632 . . 3 ((𝐴 · 𝑃) + 0) = 𝐶
15 decmul1.d . . . . 5 (𝐵 · 𝑃) = 𝐷
168nn0cni 11181 . . . . . 6 𝐷 ∈ ℂ
1716addid2i 10103 . . . . 5 (0 + 𝐷) = 𝐷
1815, 17eqtr4i 2635 . . . 4 (𝐵 · 𝑃) = (0 + 𝐷)
191nn0cni 11181 . . . . . . 7 10 ∈ ℂ
2019mul01i 10105 . . . . . 6 (10 · 0) = 0
2120eqcomi 2619 . . . . 5 0 = (10 · 0)
2221oveq1i 6559 . . . 4 (0 + 𝐷) = ((10 · 0) + 𝐷)
2318, 22eqtri 2632 . . 3 (𝐵 · 𝑃) = ((10 · 0) + 𝐷)
241, 2, 3, 4, 7, 8, 9, 14, 23nummul1c 11438 . 2 (𝑁 · 𝑃) = ((10 · 𝐶) + 𝐷)
25 dfdecOLD 11371 . 2 𝐶𝐷 = ((10 · 𝐶) + 𝐷)
2624, 25eqtr4i 2635 1 (𝑁 · 𝑃) = 𝐶𝐷
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∈ wcel 1977  (class class class)co 6549  0cc0 9815   + caddc 9818   · cmul 9820  10c10 10955  ℕ0cn0 11169  ;cdc 11369 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-ltxr 9958  df-sub 10147  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-10OLD 10964  df-n0 11170  df-dec 11370 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator