Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addid1i | Structured version Visualization version GIF version |
Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
addid1i | ⊢ (𝐴 + 0) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | addid1 10095 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 + 0) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 ∈ wcel 1977 (class class class)co 6549 ℂcc 9813 0cc0 9815 + caddc 9818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-ltxr 9958 |
This theorem is referenced by: 1p0e1 11010 9p1e10 11372 num0u 11384 numnncl2 11400 dec10OLD 11431 decrmanc 11452 decaddi 11455 decaddci 11456 decmul1 11461 decmul1OLD 11462 decmulnc 11467 sq10OLD 12913 fsumrelem 14380 bpoly4 14629 demoivreALT 14770 decexp2 15617 decsplit0 15623 decsplit0OLD 15627 37prm 15666 43prm 15667 139prm 15669 163prm 15670 317prm 15671 631prm 15672 1259lem2 15677 1259lem3 15678 1259lem4 15679 1259lem5 15680 2503lem1 15682 2503lem2 15683 2503lem3 15684 4001lem1 15686 4001lem2 15687 4001lem3 15688 4001lem4 15689 sinhalfpilem 24019 efipi 24029 asin1 24421 log2ublem3 24475 log2ub 24476 birthday 24481 emcllem6 24527 lgam1 24590 vdegp1ai 26511 ip2i 27067 pythi 27089 normlem6 27356 normpythi 27383 normpari 27395 pjneli 27966 ballotth 29926 dirkertrigeqlem3 38993 fourierdlem103 39102 fourierdlem104 39103 fouriersw 39124 257prm 40011 fmtno4nprmfac193 40024 fmtno5faclem3 40031 fmtno5fac 40032 139prmALT 40049 127prm 40053 m11nprm 40056 |
Copyright terms: Public domain | W3C validator |