MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addid1i Structured version   Visualization version   GIF version

Theorem addid1i 10102
Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
Hypothesis
Ref Expression
mul.1 𝐴 ∈ ℂ
Assertion
Ref Expression
addid1i (𝐴 + 0) = 𝐴

Proof of Theorem addid1i
StepHypRef Expression
1 mul.1 . 2 𝐴 ∈ ℂ
2 addid1 10095 . 2 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
31, 2ax-mp 5 1 (𝐴 + 0) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1475  wcel 1977  (class class class)co 6549  cc 9813  0cc0 9815   + caddc 9818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-ltxr 9958
This theorem is referenced by:  1p0e1  11010  9p1e10  11372  num0u  11384  numnncl2  11400  dec10OLD  11431  decrmanc  11452  decaddi  11455  decaddci  11456  decmul1  11461  decmul1OLD  11462  decmulnc  11467  sq10OLD  12913  fsumrelem  14380  bpoly4  14629  demoivreALT  14770  decexp2  15617  decsplit0  15623  decsplit0OLD  15627  37prm  15666  43prm  15667  139prm  15669  163prm  15670  317prm  15671  631prm  15672  1259lem2  15677  1259lem3  15678  1259lem4  15679  1259lem5  15680  2503lem1  15682  2503lem2  15683  2503lem3  15684  4001lem1  15686  4001lem2  15687  4001lem3  15688  4001lem4  15689  sinhalfpilem  24019  efipi  24029  asin1  24421  log2ublem3  24475  log2ub  24476  birthday  24481  emcllem6  24527  lgam1  24590  vdegp1ai  26511  ip2i  27067  pythi  27089  normlem6  27356  normpythi  27383  normpari  27395  pjneli  27966  ballotth  29926  dirkertrigeqlem3  38993  fourierdlem103  39102  fourierdlem104  39103  fouriersw  39124  257prm  40011  fmtno4nprmfac193  40024  fmtno5faclem3  40031  fmtno5fac  40032  139prmALT  40049  127prm  40053  m11nprm  40056
  Copyright terms: Public domain W3C validator