Step | Hyp | Ref
| Expression |
1 | | iscyg.1 |
. . . . 5
⊢ 𝐵 = (Base‘𝐺) |
2 | | iscyg.2 |
. . . . 5
⊢ · =
(.g‘𝐺) |
3 | | iscyg3.e |
. . . . 5
⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} |
4 | 1, 2, 3 | iscyggen2 18106 |
. . . 4
⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)))) |
5 | 4 | simprbda 651 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → 𝑋 ∈ 𝐵) |
6 | | cyggeninv.n |
. . . 4
⊢ 𝑁 = (invg‘𝐺) |
7 | 1, 6 | grpinvcl 17290 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
8 | 5, 7 | syldan 486 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → (𝑁‘𝑋) ∈ 𝐵) |
9 | 4 | simplbda 652 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)) |
10 | | oveq1 6556 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → (𝑛 · 𝑋) = (𝑚 · 𝑋)) |
11 | 10 | eqeq2d 2620 |
. . . . . 6
⊢ (𝑛 = 𝑚 → (𝑦 = (𝑛 · 𝑋) ↔ 𝑦 = (𝑚 · 𝑋))) |
12 | 11 | cbvrexv 3148 |
. . . . 5
⊢
(∃𝑛 ∈
ℤ 𝑦 = (𝑛 · 𝑋) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝑚 · 𝑋)) |
13 | | znegcl 11289 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℤ → -𝑚 ∈
ℤ) |
14 | 13 | adantl 481 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) ∧ 𝑚 ∈ ℤ) → -𝑚 ∈ ℤ) |
15 | | simpr 476 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ) |
16 | 15 | zcnd 11359 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ) |
17 | 16 | negnegd 10262 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) ∧ 𝑚 ∈ ℤ) → --𝑚 = 𝑚) |
18 | 17 | oveq1d 6564 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) ∧ 𝑚 ∈ ℤ) → (--𝑚 · 𝑋) = (𝑚 · 𝑋)) |
19 | | simplll 794 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) ∧ 𝑚 ∈ ℤ) → 𝐺 ∈ Grp) |
20 | 5 | ad2antrr 758 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) ∧ 𝑚 ∈ ℤ) → 𝑋 ∈ 𝐵) |
21 | 1, 2, 6 | mulgneg2 17398 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ -𝑚 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (--𝑚 · 𝑋) = (-𝑚 · (𝑁‘𝑋))) |
22 | 19, 14, 20, 21 | syl3anc 1318 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) ∧ 𝑚 ∈ ℤ) → (--𝑚 · 𝑋) = (-𝑚 · (𝑁‘𝑋))) |
23 | 18, 22 | eqtr3d 2646 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) ∧ 𝑚 ∈ ℤ) → (𝑚 · 𝑋) = (-𝑚 · (𝑁‘𝑋))) |
24 | | oveq1 6556 |
. . . . . . . . . 10
⊢ (𝑛 = -𝑚 → (𝑛 · (𝑁‘𝑋)) = (-𝑚 · (𝑁‘𝑋))) |
25 | 24 | eqeq2d 2620 |
. . . . . . . . 9
⊢ (𝑛 = -𝑚 → ((𝑚 · 𝑋) = (𝑛 · (𝑁‘𝑋)) ↔ (𝑚 · 𝑋) = (-𝑚 · (𝑁‘𝑋)))) |
26 | 25 | rspcev 3282 |
. . . . . . . 8
⊢ ((-𝑚 ∈ ℤ ∧ (𝑚 · 𝑋) = (-𝑚 · (𝑁‘𝑋))) → ∃𝑛 ∈ ℤ (𝑚 · 𝑋) = (𝑛 · (𝑁‘𝑋))) |
27 | 14, 23, 26 | syl2anc 691 |
. . . . . . 7
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) ∧ 𝑚 ∈ ℤ) → ∃𝑛 ∈ ℤ (𝑚 · 𝑋) = (𝑛 · (𝑁‘𝑋))) |
28 | | eqeq1 2614 |
. . . . . . . 8
⊢ (𝑦 = (𝑚 · 𝑋) → (𝑦 = (𝑛 · (𝑁‘𝑋)) ↔ (𝑚 · 𝑋) = (𝑛 · (𝑁‘𝑋)))) |
29 | 28 | rexbidv 3034 |
. . . . . . 7
⊢ (𝑦 = (𝑚 · 𝑋) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁‘𝑋)) ↔ ∃𝑛 ∈ ℤ (𝑚 · 𝑋) = (𝑛 · (𝑁‘𝑋)))) |
30 | 27, 29 | syl5ibrcom 236 |
. . . . . 6
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) ∧ 𝑚 ∈ ℤ) → (𝑦 = (𝑚 · 𝑋) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁‘𝑋)))) |
31 | 30 | rexlimdva 3013 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) → (∃𝑚 ∈ ℤ 𝑦 = (𝑚 · 𝑋) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁‘𝑋)))) |
32 | 12, 31 | syl5bi 231 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) ∧ 𝑦 ∈ 𝐵) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁‘𝑋)))) |
33 | 32 | ralimdva 2945 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → (∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋) → ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁‘𝑋)))) |
34 | 9, 33 | mpd 15 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁‘𝑋))) |
35 | 1, 2, 3 | iscyggen2 18106 |
. . 3
⊢ (𝐺 ∈ Grp → ((𝑁‘𝑋) ∈ 𝐸 ↔ ((𝑁‘𝑋) ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁‘𝑋))))) |
36 | 35 | adantr 480 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → ((𝑁‘𝑋) ∈ 𝐸 ↔ ((𝑁‘𝑋) ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁‘𝑋))))) |
37 | 8, 34, 36 | mpbir2and 959 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → (𝑁‘𝑋) ∈ 𝐸) |