MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyggeninv Structured version   Unicode version

Theorem cyggeninv 17210
Description: The inverse of a cyclic generator is a generator. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1  |-  B  =  ( Base `  G
)
iscyg.2  |-  .x.  =  (.g
`  G )
iscyg3.e  |-  E  =  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }
cyggeninv.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
cyggeninv  |-  ( ( G  e.  Grp  /\  X  e.  E )  ->  ( N `  X
)  e.  E )
Distinct variable groups:    x, n, B    n, N, x    n, X, x    n, G, x    .x. , n, x
Allowed substitution hints:    E( x, n)

Proof of Theorem cyggeninv
Dummy variables  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscyg.1 . . . . 5  |-  B  =  ( Base `  G
)
2 iscyg.2 . . . . 5  |-  .x.  =  (.g
`  G )
3 iscyg3.e . . . . 5  |-  E  =  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }
41, 2, 3iscyggen2 17208 . . . 4  |-  ( G  e.  Grp  ->  ( X  e.  E  <->  ( X  e.  B  /\  A. y  e.  B  E. n  e.  ZZ  y  =  ( n  .x.  X ) ) ) )
54simprbda 621 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  E )  ->  X  e.  B )
6 cyggeninv.n . . . 4  |-  N  =  ( invg `  G )
71, 6grpinvcl 16419 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
85, 7syldan 468 . 2  |-  ( ( G  e.  Grp  /\  X  e.  E )  ->  ( N `  X
)  e.  B )
94simplbda 622 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  E )  ->  A. y  e.  B  E. n  e.  ZZ  y  =  ( n  .x.  X ) )
10 oveq1 6285 . . . . . . 7  |-  ( n  =  m  ->  (
n  .x.  X )  =  ( m  .x.  X ) )
1110eqeq2d 2416 . . . . . 6  |-  ( n  =  m  ->  (
y  =  ( n 
.x.  X )  <->  y  =  ( m  .x.  X ) ) )
1211cbvrexv 3035 . . . . 5  |-  ( E. n  e.  ZZ  y  =  ( n  .x.  X )  <->  E. m  e.  ZZ  y  =  ( m  .x.  X ) )
13 znegcl 10940 . . . . . . . . 9  |-  ( m  e.  ZZ  ->  -u m  e.  ZZ )
1413adantl 464 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  E )  /\  y  e.  B )  /\  m  e.  ZZ )  ->  -u m  e.  ZZ )
15 simpr 459 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  E )  /\  y  e.  B )  /\  m  e.  ZZ )  ->  m  e.  ZZ )
1615zcnd 11009 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  E )  /\  y  e.  B )  /\  m  e.  ZZ )  ->  m  e.  CC )
1716negnegd 9958 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  E )  /\  y  e.  B )  /\  m  e.  ZZ )  ->  -u -u m  =  m )
1817oveq1d 6293 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  E )  /\  y  e.  B )  /\  m  e.  ZZ )  ->  ( -u -u m  .x.  X )  =  ( m  .x.  X ) )
19 simplll 760 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  E )  /\  y  e.  B )  /\  m  e.  ZZ )  ->  G  e.  Grp )
205ad2antrr 724 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  E )  /\  y  e.  B )  /\  m  e.  ZZ )  ->  X  e.  B )
211, 2, 6mulgneg2 16493 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  -u m  e.  ZZ  /\  X  e.  B )  ->  ( -u -u m  .x.  X )  =  (
-u m  .x.  ( N `  X )
) )
2219, 14, 20, 21syl3anc 1230 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  E )  /\  y  e.  B )  /\  m  e.  ZZ )  ->  ( -u -u m  .x.  X )  =  ( -u m  .x.  ( N `  X
) ) )
2318, 22eqtr3d 2445 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  E )  /\  y  e.  B )  /\  m  e.  ZZ )  ->  (
m  .x.  X )  =  ( -u m  .x.  ( N `  X
) ) )
24 oveq1 6285 . . . . . . . . . 10  |-  ( n  =  -u m  ->  (
n  .x.  ( N `  X ) )  =  ( -u m  .x.  ( N `  X ) ) )
2524eqeq2d 2416 . . . . . . . . 9  |-  ( n  =  -u m  ->  (
( m  .x.  X
)  =  ( n 
.x.  ( N `  X ) )  <->  ( m  .x.  X )  =  (
-u m  .x.  ( N `  X )
) ) )
2625rspcev 3160 . . . . . . . 8  |-  ( (
-u m  e.  ZZ  /\  ( m  .x.  X
)  =  ( -u m  .x.  ( N `  X ) ) )  ->  E. n  e.  ZZ  ( m  .x.  X )  =  ( n  .x.  ( N `  X ) ) )
2714, 23, 26syl2anc 659 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  E )  /\  y  e.  B )  /\  m  e.  ZZ )  ->  E. n  e.  ZZ  ( m  .x.  X )  =  ( n  .x.  ( N `
 X ) ) )
28 eqeq1 2406 . . . . . . . 8  |-  ( y  =  ( m  .x.  X )  ->  (
y  =  ( n 
.x.  ( N `  X ) )  <->  ( m  .x.  X )  =  ( n  .x.  ( N `
 X ) ) ) )
2928rexbidv 2918 . . . . . . 7  |-  ( y  =  ( m  .x.  X )  ->  ( E. n  e.  ZZ  y  =  ( n  .x.  ( N `  X
) )  <->  E. n  e.  ZZ  ( m  .x.  X )  =  ( n  .x.  ( N `
 X ) ) ) )
3027, 29syl5ibrcom 222 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  E )  /\  y  e.  B )  /\  m  e.  ZZ )  ->  (
y  =  ( m 
.x.  X )  ->  E. n  e.  ZZ  y  =  ( n  .x.  ( N `  X
) ) ) )
3130rexlimdva 2896 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  E )  /\  y  e.  B
)  ->  ( E. m  e.  ZZ  y  =  ( m  .x.  X )  ->  E. n  e.  ZZ  y  =  ( n  .x.  ( N `
 X ) ) ) )
3212, 31syl5bi 217 . . . 4  |-  ( ( ( G  e.  Grp  /\  X  e.  E )  /\  y  e.  B
)  ->  ( E. n  e.  ZZ  y  =  ( n  .x.  X )  ->  E. n  e.  ZZ  y  =  ( n  .x.  ( N `
 X ) ) ) )
3332ralimdva 2812 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  E )  ->  ( A. y  e.  B  E. n  e.  ZZ  y  =  ( n  .x.  X )  ->  A. y  e.  B  E. n  e.  ZZ  y  =  ( n  .x.  ( N `  X
) ) ) )
349, 33mpd 15 . 2  |-  ( ( G  e.  Grp  /\  X  e.  E )  ->  A. y  e.  B  E. n  e.  ZZ  y  =  ( n  .x.  ( N `  X
) ) )
351, 2, 3iscyggen2 17208 . . 3  |-  ( G  e.  Grp  ->  (
( N `  X
)  e.  E  <->  ( ( N `  X )  e.  B  /\  A. y  e.  B  E. n  e.  ZZ  y  =  ( n  .x.  ( N `
 X ) ) ) ) )
3635adantr 463 . 2  |-  ( ( G  e.  Grp  /\  X  e.  E )  ->  ( ( N `  X )  e.  E  <->  ( ( N `  X
)  e.  B  /\  A. y  e.  B  E. n  e.  ZZ  y  =  ( n  .x.  ( N `  X ) ) ) ) )
378, 34, 36mpbir2and 923 1  |-  ( ( G  e.  Grp  /\  X  e.  E )  ->  ( N `  X
)  e.  E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2754   E.wrex 2755   {crab 2758    |-> cmpt 4453   ran crn 4824   ` cfv 5569  (class class class)co 6278   -ucneg 9842   ZZcz 10905   Basecbs 14841   Grpcgrp 16377   invgcminusg 16378  .gcmg 16380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-inf2 8091  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-nn 10577  df-n0 10837  df-z 10906  df-uz 11128  df-fz 11727  df-seq 12152  df-0g 15056  df-mgm 16196  df-sgrp 16235  df-mnd 16245  df-grp 16381  df-minusg 16382  df-mulg 16384
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator