MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwrepswhash1 Structured version   Visualization version   GIF version

Theorem cshwrepswhash1 15647
Description: The size of the set of (different!) words resulting by cyclically shifting a nonempty "repeated symbol word" is 1. (Contributed by AV, 18-May-2018.) (Revised by AV, 8-Nov-2018.)
Hypothesis
Ref Expression
cshwrepswhash1.m 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤}
Assertion
Ref Expression
cshwrepswhash1 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → (#‘𝑀) = 1)
Distinct variable groups:   𝑛,𝑉,𝑤   𝑛,𝑊,𝑤   𝐴,𝑛,𝑤   𝑛,𝑁,𝑤
Allowed substitution hints:   𝑀(𝑤,𝑛)

Proof of Theorem cshwrepswhash1
Dummy variables 𝑖 𝑢 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 11176 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 repsdf2 13376 . . . . . . . 8 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝑊 = (𝐴 repeatS 𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)))
31, 2sylan2 490 . . . . . . 7 ((𝐴𝑉𝑁 ∈ ℕ) → (𝑊 = (𝐴 repeatS 𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)))
4 simp1 1054 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → 𝑊 ∈ Word 𝑉)
54adantl 481 . . . . . . . . 9 (((𝐴𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)) → 𝑊 ∈ Word 𝑉)
6 eleq1 2676 . . . . . . . . . . . . . . . 16 (𝑁 = (#‘𝑊) → (𝑁 ∈ ℕ ↔ (#‘𝑊) ∈ ℕ))
76eqcoms 2618 . . . . . . . . . . . . . . 15 ((#‘𝑊) = 𝑁 → (𝑁 ∈ ℕ ↔ (#‘𝑊) ∈ ℕ))
8 lbfzo0 12375 . . . . . . . . . . . . . . . 16 (0 ∈ (0..^(#‘𝑊)) ↔ (#‘𝑊) ∈ ℕ)
98biimpri 217 . . . . . . . . . . . . . . 15 ((#‘𝑊) ∈ ℕ → 0 ∈ (0..^(#‘𝑊)))
107, 9syl6bi 242 . . . . . . . . . . . . . 14 ((#‘𝑊) = 𝑁 → (𝑁 ∈ ℕ → 0 ∈ (0..^(#‘𝑊))))
11103ad2ant2 1076 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → (𝑁 ∈ ℕ → 0 ∈ (0..^(#‘𝑊))))
1211com12 32 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → 0 ∈ (0..^(#‘𝑊))))
1312adantl 481 . . . . . . . . . . 11 ((𝐴𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → 0 ∈ (0..^(#‘𝑊))))
1413imp 444 . . . . . . . . . 10 (((𝐴𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)) → 0 ∈ (0..^(#‘𝑊)))
15 cshw0 13391 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊)
165, 15syl 17 . . . . . . . . . 10 (((𝐴𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)) → (𝑊 cyclShift 0) = 𝑊)
17 oveq2 6557 . . . . . . . . . . . 12 (𝑛 = 0 → (𝑊 cyclShift 𝑛) = (𝑊 cyclShift 0))
1817eqeq1d 2612 . . . . . . . . . . 11 (𝑛 = 0 → ((𝑊 cyclShift 𝑛) = 𝑊 ↔ (𝑊 cyclShift 0) = 𝑊))
1918rspcev 3282 . . . . . . . . . 10 ((0 ∈ (0..^(#‘𝑊)) ∧ (𝑊 cyclShift 0) = 𝑊) → ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑊)
2014, 16, 19syl2anc 691 . . . . . . . . 9 (((𝐴𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)) → ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑊)
21 eqeq2 2621 . . . . . . . . . . 11 (𝑤 = 𝑊 → ((𝑊 cyclShift 𝑛) = 𝑤 ↔ (𝑊 cyclShift 𝑛) = 𝑊))
2221rexbidv 3034 . . . . . . . . . 10 (𝑤 = 𝑊 → (∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑊))
2322rspcev 3282 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑊) → ∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)
245, 20, 23syl2anc 691 . . . . . . . 8 (((𝐴𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)) → ∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)
2524ex 449 . . . . . . 7 ((𝐴𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → ∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤))
263, 25sylbid 229 . . . . . 6 ((𝐴𝑉𝑁 ∈ ℕ) → (𝑊 = (𝐴 repeatS 𝑁) → ∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤))
27263impia 1253 . . . . 5 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)
28 repsw 13373 . . . . . . . 8 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝐴 repeatS 𝑁) ∈ Word 𝑉)
291, 28sylan2 490 . . . . . . 7 ((𝐴𝑉𝑁 ∈ ℕ) → (𝐴 repeatS 𝑁) ∈ Word 𝑉)
30293adant3 1074 . . . . . 6 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → (𝐴 repeatS 𝑁) ∈ Word 𝑉)
31 simpll3 1095 . . . . . . . . . . . 12 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(#‘𝑊))) → 𝑊 = (𝐴 repeatS 𝑁))
3231oveq1d 6564 . . . . . . . . . . 11 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(#‘𝑊))) → (𝑊 cyclShift 𝑛) = ((𝐴 repeatS 𝑁) cyclShift 𝑛))
33 simp1 1054 . . . . . . . . . . . . 13 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → 𝐴𝑉)
3433ad2antrr 758 . . . . . . . . . . . 12 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(#‘𝑊))) → 𝐴𝑉)
3513ad2ant2 1076 . . . . . . . . . . . . 13 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → 𝑁 ∈ ℕ0)
3635ad2antrr 758 . . . . . . . . . . . 12 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(#‘𝑊))) → 𝑁 ∈ ℕ0)
37 elfzoelz 12339 . . . . . . . . . . . . 13 (𝑛 ∈ (0..^(#‘𝑊)) → 𝑛 ∈ ℤ)
3837adantl 481 . . . . . . . . . . . 12 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(#‘𝑊))) → 𝑛 ∈ ℤ)
39 repswcshw 13409 . . . . . . . . . . . 12 ((𝐴𝑉𝑁 ∈ ℕ0𝑛 ∈ ℤ) → ((𝐴 repeatS 𝑁) cyclShift 𝑛) = (𝐴 repeatS 𝑁))
4034, 36, 38, 39syl3anc 1318 . . . . . . . . . . 11 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(#‘𝑊))) → ((𝐴 repeatS 𝑁) cyclShift 𝑛) = (𝐴 repeatS 𝑁))
4132, 40eqtrd 2644 . . . . . . . . . 10 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(#‘𝑊))) → (𝑊 cyclShift 𝑛) = (𝐴 repeatS 𝑁))
4241eqeq1d 2612 . . . . . . . . 9 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(#‘𝑊))) → ((𝑊 cyclShift 𝑛) = 𝑢 ↔ (𝐴 repeatS 𝑁) = 𝑢))
4342biimpd 218 . . . . . . . 8 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(#‘𝑊))) → ((𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢))
4443rexlimdva 3013 . . . . . . 7 (((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) → (∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢))
4544ralrimiva 2949 . . . . . 6 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∀𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢))
46 eqeq1 2614 . . . . . . . . 9 (𝑤 = (𝐴 repeatS 𝑁) → (𝑤 = 𝑢 ↔ (𝐴 repeatS 𝑁) = 𝑢))
4746imbi2d 329 . . . . . . . 8 (𝑤 = (𝐴 repeatS 𝑁) → ((∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢𝑤 = 𝑢) ↔ (∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢)))
4847ralbidv 2969 . . . . . . 7 (𝑤 = (𝐴 repeatS 𝑁) → (∀𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢𝑤 = 𝑢) ↔ ∀𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢)))
4948rspcev 3282 . . . . . 6 (((𝐴 repeatS 𝑁) ∈ Word 𝑉 ∧ ∀𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢)) → ∃𝑤 ∈ Word 𝑉𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢𝑤 = 𝑢))
5030, 45, 49syl2anc 691 . . . . 5 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∃𝑤 ∈ Word 𝑉𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢𝑤 = 𝑢))
51 eqeq2 2621 . . . . . . 7 (𝑤 = 𝑢 → ((𝑊 cyclShift 𝑛) = 𝑤 ↔ (𝑊 cyclShift 𝑛) = 𝑢))
5251rexbidv 3034 . . . . . 6 (𝑤 = 𝑢 → (∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢))
5352reu7 3368 . . . . 5 (∃!𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ (∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ∧ ∃𝑤 ∈ Word 𝑉𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢𝑤 = 𝑢)))
5427, 50, 53sylanbrc 695 . . . 4 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∃!𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)
55 reusn 4206 . . . 4 (∃!𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ ∃𝑟{𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑟})
5654, 55sylib 207 . . 3 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∃𝑟{𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑟})
57 cshwrepswhash1.m . . . . 5 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤}
5857eqeq1i 2615 . . . 4 (𝑀 = {𝑟} ↔ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑟})
5958exbii 1764 . . 3 (∃𝑟 𝑀 = {𝑟} ↔ ∃𝑟{𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑟})
6056, 59sylibr 223 . 2 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∃𝑟 𝑀 = {𝑟})
6157cshwsex 15645 . . . . . 6 (𝑊 ∈ Word 𝑉𝑀 ∈ V)
62613ad2ant1 1075 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → 𝑀 ∈ V)
633, 62syl6bi 242 . . . 4 ((𝐴𝑉𝑁 ∈ ℕ) → (𝑊 = (𝐴 repeatS 𝑁) → 𝑀 ∈ V))
64633impia 1253 . . 3 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → 𝑀 ∈ V)
65 hash1snb 13068 . . 3 (𝑀 ∈ V → ((#‘𝑀) = 1 ↔ ∃𝑟 𝑀 = {𝑟}))
6664, 65syl 17 . 2 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ((#‘𝑀) = 1 ↔ ∃𝑟 𝑀 = {𝑟}))
6760, 66mpbird 246 1 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → (#‘𝑀) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wral 2896  wrex 2897  ∃!wreu 2898  {crab 2900  Vcvv 3173  {csn 4125  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816  cn 10897  0cn0 11169  cz 11254  ..^cfzo 12334  #chash 12979  Word cword 13146   repeatS creps 13153   cyclShift ccsh 13385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-hash 12980  df-word 13154  df-concat 13156  df-substr 13158  df-reps 13161  df-csh 13386
This theorem is referenced by:  cshwshash  15649
  Copyright terms: Public domain W3C validator