Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hash1snb | Structured version Visualization version GIF version |
Description: The size of a set is 1 if and only if it is a singleton (containing a set). (Contributed by Alexander van der Vekens, 7-Dec-2017.) |
Ref | Expression |
---|---|
hash1snb | ⊢ (𝑉 ∈ 𝑊 → ((#‘𝑉) = 1 ↔ ∃𝑎 𝑉 = {𝑎})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . . . . 9 ⊢ ((#‘𝑉) = 1 → (#‘𝑉) = 1) | |
2 | hash1 13053 | . . . . . . . . 9 ⊢ (#‘1𝑜) = 1 | |
3 | 1, 2 | syl6eqr 2662 | . . . . . . . 8 ⊢ ((#‘𝑉) = 1 → (#‘𝑉) = (#‘1𝑜)) |
4 | 3 | adantl 481 | . . . . . . 7 ⊢ ((𝑉 ∈ Fin ∧ (#‘𝑉) = 1) → (#‘𝑉) = (#‘1𝑜)) |
5 | 1onn 7606 | . . . . . . . . 9 ⊢ 1𝑜 ∈ ω | |
6 | nnfi 8038 | . . . . . . . . 9 ⊢ (1𝑜 ∈ ω → 1𝑜 ∈ Fin) | |
7 | 5, 6 | mp1i 13 | . . . . . . . 8 ⊢ ((#‘𝑉) = 1 → 1𝑜 ∈ Fin) |
8 | hashen 12997 | . . . . . . . 8 ⊢ ((𝑉 ∈ Fin ∧ 1𝑜 ∈ Fin) → ((#‘𝑉) = (#‘1𝑜) ↔ 𝑉 ≈ 1𝑜)) | |
9 | 7, 8 | sylan2 490 | . . . . . . 7 ⊢ ((𝑉 ∈ Fin ∧ (#‘𝑉) = 1) → ((#‘𝑉) = (#‘1𝑜) ↔ 𝑉 ≈ 1𝑜)) |
10 | 4, 9 | mpbid 221 | . . . . . 6 ⊢ ((𝑉 ∈ Fin ∧ (#‘𝑉) = 1) → 𝑉 ≈ 1𝑜) |
11 | en1 7909 | . . . . . 6 ⊢ (𝑉 ≈ 1𝑜 ↔ ∃𝑎 𝑉 = {𝑎}) | |
12 | 10, 11 | sylib 207 | . . . . 5 ⊢ ((𝑉 ∈ Fin ∧ (#‘𝑉) = 1) → ∃𝑎 𝑉 = {𝑎}) |
13 | 12 | ex 449 | . . . 4 ⊢ (𝑉 ∈ Fin → ((#‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎})) |
14 | 13 | a1d 25 | . . 3 ⊢ (𝑉 ∈ Fin → (𝑉 ∈ 𝑊 → ((#‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎}))) |
15 | hashinf 12984 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ ¬ 𝑉 ∈ Fin) → (#‘𝑉) = +∞) | |
16 | eqeq1 2614 | . . . . . 6 ⊢ ((#‘𝑉) = +∞ → ((#‘𝑉) = 1 ↔ +∞ = 1)) | |
17 | 1re 9918 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
18 | renepnf 9966 | . . . . . . . . 9 ⊢ (1 ∈ ℝ → 1 ≠ +∞) | |
19 | 17, 18 | ax-mp 5 | . . . . . . . 8 ⊢ 1 ≠ +∞ |
20 | df-ne 2782 | . . . . . . . . 9 ⊢ (1 ≠ +∞ ↔ ¬ 1 = +∞) | |
21 | pm2.21 119 | . . . . . . . . 9 ⊢ (¬ 1 = +∞ → (1 = +∞ → ∃𝑎 𝑉 = {𝑎})) | |
22 | 20, 21 | sylbi 206 | . . . . . . . 8 ⊢ (1 ≠ +∞ → (1 = +∞ → ∃𝑎 𝑉 = {𝑎})) |
23 | 19, 22 | ax-mp 5 | . . . . . . 7 ⊢ (1 = +∞ → ∃𝑎 𝑉 = {𝑎}) |
24 | 23 | eqcoms 2618 | . . . . . 6 ⊢ (+∞ = 1 → ∃𝑎 𝑉 = {𝑎}) |
25 | 16, 24 | syl6bi 242 | . . . . 5 ⊢ ((#‘𝑉) = +∞ → ((#‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎})) |
26 | 15, 25 | syl 17 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ ¬ 𝑉 ∈ Fin) → ((#‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎})) |
27 | 26 | expcom 450 | . . 3 ⊢ (¬ 𝑉 ∈ Fin → (𝑉 ∈ 𝑊 → ((#‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎}))) |
28 | 14, 27 | pm2.61i 175 | . 2 ⊢ (𝑉 ∈ 𝑊 → ((#‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎})) |
29 | fveq2 6103 | . . . 4 ⊢ (𝑉 = {𝑎} → (#‘𝑉) = (#‘{𝑎})) | |
30 | vex 3176 | . . . . 5 ⊢ 𝑎 ∈ V | |
31 | hashsng 13020 | . . . . 5 ⊢ (𝑎 ∈ V → (#‘{𝑎}) = 1) | |
32 | 30, 31 | ax-mp 5 | . . . 4 ⊢ (#‘{𝑎}) = 1 |
33 | 29, 32 | syl6eq 2660 | . . 3 ⊢ (𝑉 = {𝑎} → (#‘𝑉) = 1) |
34 | 33 | exlimiv 1845 | . 2 ⊢ (∃𝑎 𝑉 = {𝑎} → (#‘𝑉) = 1) |
35 | 28, 34 | impbid1 214 | 1 ⊢ (𝑉 ∈ 𝑊 → ((#‘𝑉) = 1 ↔ ∃𝑎 𝑉 = {𝑎})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∃wex 1695 ∈ wcel 1977 ≠ wne 2780 Vcvv 3173 {csn 4125 class class class wbr 4583 ‘cfv 5804 ωcom 6957 1𝑜c1o 7440 ≈ cen 7838 Fincfn 7841 ℝcr 9814 1c1 9816 +∞cpnf 9950 #chash 12979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-hash 12980 |
This theorem is referenced by: hashge2el2difr 13118 hash1to3 13128 cshwrepswhash1 15647 mat1scmat 20164 tgldim0eq 25198 upgredg 25811 usgrafisindb1 25938 rusgrasn 26472 vdfrgra0 26549 vdn1frgrav2 26552 vdgn1frgrav2 26553 frgrawopreg1 26577 frgrawopreg2 26578 hash1n0 40370 lfuhgr1v0e 40480 usgr1v0e 40545 nbgr1vtx 40580 uvtxa01vtx0 40623 cplgr1vlem 40651 cplgr1v 40652 1loopgrvd2 40718 vdgn1frgrv2 41466 frgrwopreg1 41487 frgrwopreg2 41488 c0snmgmhm 41704 |
Copyright terms: Public domain | W3C validator |