Step | Hyp | Ref
| Expression |
1 | | cpmadumatpoly.a |
. . 3
⊢ 𝐴 = (𝑁 Mat 𝑅) |
2 | | cpmadumatpoly.b |
. . 3
⊢ 𝐵 = (Base‘𝐴) |
3 | | cpmadumatpoly.p |
. . 3
⊢ 𝑃 = (Poly1‘𝑅) |
4 | | cpmadumatpoly.y |
. . 3
⊢ 𝑌 = (𝑁 Mat 𝑃) |
5 | | cpmadumatpoly.t |
. . 3
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
6 | | cpmadumatpoly.z |
. . 3
⊢ 𝑍 = (var1‘𝑅) |
7 | | eqid 2610 |
. . 3
⊢
(.g‘(mulGrp‘𝑃)) =
(.g‘(mulGrp‘𝑃)) |
8 | | cpmadumatpoly.m1 |
. . 3
⊢ · = (
·𝑠 ‘𝑌) |
9 | | cpmadumatpoly.r |
. . 3
⊢ × =
(.r‘𝑌) |
10 | | cpmadumatpoly.1 |
. . 3
⊢ 1 =
(1r‘𝑌) |
11 | | eqid 2610 |
. . 3
⊢
(+g‘𝑌) = (+g‘𝑌) |
12 | | cpmadumatpoly.m0 |
. . 3
⊢ − =
(-g‘𝑌) |
13 | | cpmadumatpoly.d |
. . 3
⊢ 𝐷 = ((𝑍 · 1 ) − (𝑇‘𝑀)) |
14 | | cpmadumatpoly.j |
. . 3
⊢ 𝐽 = (𝑁 maAdju 𝑃) |
15 | | cpmadumatpoly.0 |
. . 3
⊢ 0 =
(0g‘𝑌) |
16 | | cpmadumatpoly.g |
. . . 4
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) |
17 | | eqeq1 2614 |
. . . . . 6
⊢ (𝑛 = 𝑧 → (𝑛 = 0 ↔ 𝑧 = 0)) |
18 | | eqeq1 2614 |
. . . . . . 7
⊢ (𝑛 = 𝑧 → (𝑛 = (𝑠 + 1) ↔ 𝑧 = (𝑠 + 1))) |
19 | | breq2 4587 |
. . . . . . . 8
⊢ (𝑛 = 𝑧 → ((𝑠 + 1) < 𝑛 ↔ (𝑠 + 1) < 𝑧)) |
20 | | oveq1 6556 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑧 → (𝑛 − 1) = (𝑧 − 1)) |
21 | 20 | fveq2d 6107 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑧 → (𝑏‘(𝑛 − 1)) = (𝑏‘(𝑧 − 1))) |
22 | 21 | fveq2d 6107 |
. . . . . . . . 9
⊢ (𝑛 = 𝑧 → (𝑇‘(𝑏‘(𝑛 − 1))) = (𝑇‘(𝑏‘(𝑧 − 1)))) |
23 | | fveq2 6103 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑧 → (𝑏‘𝑛) = (𝑏‘𝑧)) |
24 | 23 | fveq2d 6107 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑧 → (𝑇‘(𝑏‘𝑛)) = (𝑇‘(𝑏‘𝑧))) |
25 | 24 | oveq2d 6565 |
. . . . . . . . 9
⊢ (𝑛 = 𝑧 → ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛))) = ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑧)))) |
26 | 22, 25 | oveq12d 6567 |
. . . . . . . 8
⊢ (𝑛 = 𝑧 → ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))) = ((𝑇‘(𝑏‘(𝑧 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑧))))) |
27 | 19, 26 | ifbieq2d 4061 |
. . . . . . 7
⊢ (𝑛 = 𝑧 → if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛))))) = if((𝑠 + 1) < 𝑧, 0 , ((𝑇‘(𝑏‘(𝑧 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑧)))))) |
28 | 18, 27 | ifbieq2d 4061 |
. . . . . 6
⊢ (𝑛 = 𝑧 → if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))) = if(𝑧 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑧, 0 , ((𝑇‘(𝑏‘(𝑧 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑧))))))) |
29 | 17, 28 | ifbieq2d 4061 |
. . . . 5
⊢ (𝑛 = 𝑧 → if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛))))))) = if(𝑧 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑧 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑧, 0 , ((𝑇‘(𝑏‘(𝑧 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑧)))))))) |
30 | 29 | cbvmptv 4678 |
. . . 4
⊢ (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) = (𝑧 ∈ ℕ0 ↦ if(𝑧 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑧 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑧, 0 , ((𝑇‘(𝑏‘(𝑧 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑧)))))))) |
31 | 16, 30 | eqtri 2632 |
. . 3
⊢ 𝐺 = (𝑧 ∈ ℕ0 ↦ if(𝑧 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑧 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑧, 0 , ((𝑇‘(𝑏‘(𝑧 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑧)))))))) |
32 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 31 | cpmadugsum 20502 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))(𝐷 × (𝐽‘𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺‘𝑛))))) |
33 | | simp1 1054 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑁 ∈ Fin) |
34 | 33 | ad3antrrr 762 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ Fin) |
35 | | crngring 18381 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
36 | 35 | 3ad2ant2 1076 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
37 | 36 | ad3antrrr 762 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring) |
38 | | cpmadumatpoly.s |
. . . . . . . . . . . . . . 15
⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
39 | 1, 2, 3, 4, 9, 12,
15, 5, 16, 38 | chfacfisfcpmat 20479 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝐺:ℕ0⟶𝑆) |
40 | 35, 39 | syl3anl2 1367 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝐺:ℕ0⟶𝑆) |
41 | 40 | anassrs 678 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝐺:ℕ0⟶𝑆) |
42 | 41 | ffvelrnda 6267 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) ∈ 𝑆) |
43 | | cpmadumatpoly.u |
. . . . . . . . . . . 12
⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) |
44 | 38, 43, 5 | m2cpminvid2 20379 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝐺‘𝑛) ∈ 𝑆) → (𝑇‘(𝑈‘(𝐺‘𝑛))) = (𝐺‘𝑛)) |
45 | 34, 37, 42, 44 | syl3anc 1318 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑈‘(𝐺‘𝑛))) = (𝐺‘𝑛)) |
46 | 45 | eqcomd 2616 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) = (𝑇‘(𝑈‘(𝐺‘𝑛)))) |
47 | 46 | oveq2d 6565 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺‘𝑛)) = ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛))))) |
48 | 47 | mpteq2dva 4672 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛)))))) |
49 | 48 | oveq2d 6565 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺‘𝑛)))) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛))))))) |
50 | 49 | eqeq2d 2620 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → ((𝐷 × (𝐽‘𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺‘𝑛)))) ↔ (𝐷 × (𝐽‘𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛)))))))) |
51 | | fveq2 6103 |
. . . . . . 7
⊢ ((𝐷 × (𝐽‘𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛)))))) → (𝐼‘(𝐷 × (𝐽‘𝐷))) = (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛)))))))) |
52 | | 3simpa 1051 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) |
53 | 52 | ad2antrr 758 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) |
54 | | cpmadumatpoly.w |
. . . . . . . . . 10
⊢ 𝑊 = (Base‘𝑌) |
55 | | cpmadumatpoly.q |
. . . . . . . . . 10
⊢ 𝑄 = (Poly1‘𝐴) |
56 | | cpmadumatpoly.x |
. . . . . . . . . 10
⊢ 𝑋 = (var1‘𝐴) |
57 | | cpmadumatpoly.m2 |
. . . . . . . . . 10
⊢ ∗ = (
·𝑠 ‘𝑄) |
58 | | cpmadumatpoly.e |
. . . . . . . . . 10
⊢ ↑ =
(.g‘(mulGrp‘𝑄)) |
59 | 1, 2, 3, 4, 5, 9, 12, 15, 16, 38, 8, 10, 6, 13, 14, 54, 55, 56, 57, 58, 43 | cpmadumatpolylem1 20505 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑈 ∘ 𝐺) ∈ (𝐵 ↑𝑚
ℕ0)) |
60 | 1, 2, 3, 4, 5, 9, 12, 15, 16, 38, 8, 10, 6, 13, 14, 54, 55, 56, 57, 58, 43 | cpmadumatpolylem2 20506 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑈 ∘ 𝐺) finSupp (0g‘𝐴)) |
61 | | cpmadumatpoly.i |
. . . . . . . . . 10
⊢ 𝐼 = (𝑁 pMatToMatPoly 𝑅) |
62 | 3, 4, 54, 57, 58, 56, 1, 2, 55, 61, 7, 6, 8, 5 | pm2mp 20449 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ ((𝑈 ∘ 𝐺) ∈ (𝐵 ↑𝑚
ℕ0) ∧ (𝑈 ∘ 𝐺) finSupp (0g‘𝐴))) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈 ∘ 𝐺)‘𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ (((𝑈 ∘ 𝐺)‘𝑛) ∗ (𝑛 ↑ 𝑋))))) |
63 | 53, 59, 60, 62 | syl12anc 1316 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈 ∘ 𝐺)‘𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ (((𝑈 ∘ 𝐺)‘𝑛) ∗ (𝑛 ↑ 𝑋))))) |
64 | | fvco3 6185 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺:ℕ0⟶𝑆 ∧ 𝑛 ∈ ℕ0) → ((𝑈 ∘ 𝐺)‘𝑛) = (𝑈‘(𝐺‘𝑛))) |
65 | 64 | eqcomd 2616 |
. . . . . . . . . . . . . 14
⊢ ((𝐺:ℕ0⟶𝑆 ∧ 𝑛 ∈ ℕ0) → (𝑈‘(𝐺‘𝑛)) = ((𝑈 ∘ 𝐺)‘𝑛)) |
66 | 41, 65 | sylan 487 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑈‘(𝐺‘𝑛)) = ((𝑈 ∘ 𝐺)‘𝑛)) |
67 | 66 | fveq2d 6107 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑈‘(𝐺‘𝑛))) = (𝑇‘((𝑈 ∘ 𝐺)‘𝑛))) |
68 | 67 | oveq2d 6565 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛)))) = ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈 ∘ 𝐺)‘𝑛)))) |
69 | 68 | mpteq2dva 4672 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛))))) = (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈 ∘ 𝐺)‘𝑛))))) |
70 | 69 | oveq2d 6565 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛)))))) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈 ∘ 𝐺)‘𝑛)))))) |
71 | 70 | fveq2d 6107 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛))))))) = (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘((𝑈 ∘ 𝐺)‘𝑛))))))) |
72 | 66 | oveq1d 6564 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑈‘(𝐺‘𝑛)) ∗ (𝑛 ↑ 𝑋)) = (((𝑈 ∘ 𝐺)‘𝑛) ∗ (𝑛 ↑ 𝑋))) |
73 | 72 | mpteq2dva 4672 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺‘𝑛)) ∗ (𝑛 ↑ 𝑋))) = (𝑛 ∈ ℕ0 ↦ (((𝑈 ∘ 𝐺)‘𝑛) ∗ (𝑛 ↑ 𝑋)))) |
74 | 73 | oveq2d 6565 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑄 Σg (𝑛 ∈ ℕ0
↦ ((𝑈‘(𝐺‘𝑛)) ∗ (𝑛 ↑ 𝑋)))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ (((𝑈 ∘ 𝐺)‘𝑛) ∗ (𝑛 ↑ 𝑋))))) |
75 | 63, 71, 74 | 3eqtr4d 2654 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛))))))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ ((𝑈‘(𝐺‘𝑛)) ∗ (𝑛 ↑ 𝑋))))) |
76 | 51, 75 | sylan9eqr 2666 |
. . . . . 6
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ (𝐷 × (𝐽‘𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛))))))) → (𝐼‘(𝐷 × (𝐽‘𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ ((𝑈‘(𝐺‘𝑛)) ∗ (𝑛 ↑ 𝑋))))) |
77 | 76 | ex 449 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → ((𝐷 × (𝐽‘𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝑇‘(𝑈‘(𝐺‘𝑛)))))) → (𝐼‘(𝐷 × (𝐽‘𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ ((𝑈‘(𝐺‘𝑛)) ∗ (𝑛 ↑ 𝑋)))))) |
78 | 50, 77 | sylbid 229 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → ((𝐷 × (𝐽‘𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺‘𝑛)))) → (𝐼‘(𝐷 × (𝐽‘𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ ((𝑈‘(𝐺‘𝑛)) ∗ (𝑛 ↑ 𝑋)))))) |
79 | 78 | reximdva 3000 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) → (∃𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))(𝐷 × (𝐽‘𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺‘𝑛)))) → ∃𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))(𝐼‘(𝐷 × (𝐽‘𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ ((𝑈‘(𝐺‘𝑛)) ∗ (𝑛 ↑ 𝑋)))))) |
80 | 79 | reximdva 3000 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))(𝐷 × (𝐽‘𝐷)) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘𝑃))𝑍) · (𝐺‘𝑛)))) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))(𝐼‘(𝐷 × (𝐽‘𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ ((𝑈‘(𝐺‘𝑛)) ∗ (𝑛 ↑ 𝑋)))))) |
81 | 32, 80 | mpd 15 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))(𝐼‘(𝐷 × (𝐽‘𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ ((𝑈‘(𝐺‘𝑛)) ∗ (𝑛 ↑ 𝑋))))) |