MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mp Structured version   Visualization version   GIF version

Theorem pm2mp 20449
Description: The transformation of a sum of matrices having scaled monomials with the same power as entries into a sum of scaled monomials as a polynomial over matrices. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 7-Dec-2019.)
Hypotheses
Ref Expression
monmat2matmon.p 𝑃 = (Poly1𝑅)
monmat2matmon.c 𝐶 = (𝑁 Mat 𝑃)
monmat2matmon.b 𝐵 = (Base‘𝐶)
monmat2matmon.m1 = ( ·𝑠𝑄)
monmat2matmon.e1 = (.g‘(mulGrp‘𝑄))
monmat2matmon.x 𝑋 = (var1𝐴)
monmat2matmon.a 𝐴 = (𝑁 Mat 𝑅)
monmat2matmon.k 𝐾 = (Base‘𝐴)
monmat2matmon.q 𝑄 = (Poly1𝐴)
monmat2matmon.i 𝐼 = (𝑁 pMatToMatPoly 𝑅)
monmat2matmon.e2 𝐸 = (.g‘(mulGrp‘𝑃))
monmat2matmon.y 𝑌 = (var1𝑅)
monmat2matmon.m2 · = ( ·𝑠𝐶)
monmat2matmon.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
pm2mp (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → (𝐼‘(𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑀𝑛) (𝑛 𝑋)))))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝐸   𝑛,𝐼   𝑛,𝐾   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑇,𝑛   𝑛,𝑌   · ,𝑛
Allowed substitution hints:   𝐶(𝑛)   𝑃(𝑛)   𝑄(𝑛)   (𝑛)   (𝑛)   𝑋(𝑛)

Proof of Theorem pm2mp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 monmat2matmon.b . . 3 𝐵 = (Base‘𝐶)
2 eqid 2610 . . 3 (0g𝐶) = (0g𝐶)
3 crngring 18381 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
43anim2i 591 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
5 monmat2matmon.p . . . . . 6 𝑃 = (Poly1𝑅)
6 monmat2matmon.c . . . . . 6 𝐶 = (𝑁 Mat 𝑃)
75, 6pmatring 20317 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
8 ringcmn 18404 . . . . 5 (𝐶 ∈ Ring → 𝐶 ∈ CMnd)
94, 7, 83syl 18 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ CMnd)
109adantr 480 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → 𝐶 ∈ CMnd)
11 monmat2matmon.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
1211matring 20068 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
133, 12sylan2 490 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring)
14 monmat2matmon.q . . . . . 6 𝑄 = (Poly1𝐴)
1514ply1ring 19439 . . . . 5 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
16 ringmnd 18379 . . . . 5 (𝑄 ∈ Ring → 𝑄 ∈ Mnd)
1713, 15, 163syl 18 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑄 ∈ Mnd)
1817adantr 480 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → 𝑄 ∈ Mnd)
19 nn0ex 11175 . . . 4 0 ∈ V
2019a1i 11 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → ℕ0 ∈ V)
21 monmat2matmon.m1 . . . . . . 7 = ( ·𝑠𝑄)
22 monmat2matmon.e1 . . . . . . 7 = (.g‘(mulGrp‘𝑄))
23 monmat2matmon.x . . . . . . 7 𝑋 = (var1𝐴)
24 eqid 2610 . . . . . . 7 (Base‘𝑄) = (Base‘𝑄)
25 monmat2matmon.i . . . . . . 7 𝐼 = (𝑁 pMatToMatPoly 𝑅)
265, 6, 1, 21, 22, 23, 11, 14, 24, 25pm2mpghm 20440 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼 ∈ (𝐶 GrpHom 𝑄))
273, 26sylan2 490 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐼 ∈ (𝐶 GrpHom 𝑄))
2827adantr 480 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → 𝐼 ∈ (𝐶 GrpHom 𝑄))
29 ghmmhm 17493 . . . 4 (𝐼 ∈ (𝐶 GrpHom 𝑄) → 𝐼 ∈ (𝐶 MndHom 𝑄))
3028, 29syl 17 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → 𝐼 ∈ (𝐶 MndHom 𝑄))
314adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3231adantr 480 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
33 elmapi 7765 . . . . . . 7 (𝑀 ∈ (𝐾𝑚0) → 𝑀:ℕ0𝐾)
3433adantr 480 . . . . . 6 ((𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴)) → 𝑀:ℕ0𝐾)
3534adantl 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → 𝑀:ℕ0𝐾)
3635ffvelrnda 6267 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → (𝑀𝑛) ∈ 𝐾)
37 simpr 476 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
38 monmat2matmon.k . . . . 5 𝐾 = (Base‘𝐴)
39 monmat2matmon.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
40 monmat2matmon.m2 . . . . 5 · = ( ·𝑠𝐶)
41 monmat2matmon.e2 . . . . 5 𝐸 = (.g‘(mulGrp‘𝑃))
42 monmat2matmon.y . . . . 5 𝑌 = (var1𝑅)
4311, 38, 39, 5, 6, 1, 40, 41, 42mat2pmatscmxcl 20364 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑀𝑛) ∈ 𝐾𝑛 ∈ ℕ0)) → ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) ∈ 𝐵)
4432, 36, 37, 43syl12anc 1316 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) ∈ 𝐵)
45 fvex 6113 . . . . 5 (0g𝐶) ∈ V
4645a1i 11 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → (0g𝐶) ∈ V)
47 ovex 6577 . . . . 5 ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) ∈ V
4847a1i 11 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) ∈ V)
49 simpr 476 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) → 𝑀 ∈ (𝐾𝑚0))
50 fvex 6113 . . . . . . 7 (0g𝐴) ∈ V
51 fsuppmapnn0ub 12657 . . . . . . 7 ((𝑀 ∈ (𝐾𝑚0) ∧ (0g𝐴) ∈ V) → (𝑀 finSupp (0g𝐴) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑀𝑥) = (0g𝐴))))
5249, 50, 51sylancl 693 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) → (𝑀 finSupp (0g𝐴) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑀𝑥) = (0g𝐴))))
53 csbov12g 6587 . . . . . . . . . . . . . 14 (𝑥 ∈ ℕ0𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (𝑥 / 𝑛(𝑛𝐸𝑌) · 𝑥 / 𝑛(𝑇‘(𝑀𝑛))))
54 csbov1g 6588 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑛𝐸𝑌) = (𝑥 / 𝑛𝑛𝐸𝑌))
55 csbvarg 3955 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℕ0𝑥 / 𝑛𝑛 = 𝑥)
5655oveq1d 6564 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 → (𝑥 / 𝑛𝑛𝐸𝑌) = (𝑥𝐸𝑌))
5754, 56eqtrd 2644 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑛𝐸𝑌) = (𝑥𝐸𝑌))
58 csbfv2g 6142 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑇‘(𝑀𝑛)) = (𝑇𝑥 / 𝑛(𝑀𝑛)))
59 csbfv2g 6142 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑀𝑛) = (𝑀𝑥 / 𝑛𝑛))
6055fveq2d 6107 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℕ0 → (𝑀𝑥 / 𝑛𝑛) = (𝑀𝑥))
6159, 60eqtrd 2644 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑀𝑛) = (𝑀𝑥))
6261fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 → (𝑇𝑥 / 𝑛(𝑀𝑛)) = (𝑇‘(𝑀𝑥)))
6358, 62eqtrd 2644 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑇‘(𝑀𝑛)) = (𝑇‘(𝑀𝑥)))
6457, 63oveq12d 6567 . . . . . . . . . . . . . 14 (𝑥 ∈ ℕ0 → (𝑥 / 𝑛(𝑛𝐸𝑌) · 𝑥 / 𝑛(𝑇‘(𝑀𝑛))) = ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))))
6553, 64eqtrd 2644 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ0𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))))
6665adantl 481 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))))
6766adantr 480 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑀𝑥) = (0g𝐴)) → 𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))))
68 fveq2 6103 . . . . . . . . . . . . 13 ((𝑀𝑥) = (0g𝐴) → (𝑇‘(𝑀𝑥)) = (𝑇‘(0g𝐴)))
6968oveq2d 6565 . . . . . . . . . . . 12 ((𝑀𝑥) = (0g𝐴) → ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))) = ((𝑥𝐸𝑌) · (𝑇‘(0g𝐴))))
7039, 11, 38, 5, 6, 1mat2pmatghm 20354 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐴 GrpHom 𝐶))
713, 70sylan2 490 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ (𝐴 GrpHom 𝐶))
7271ad3antrrr 762 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑇 ∈ (𝐴 GrpHom 𝐶))
73 ghmmhm 17493 . . . . . . . . . . . . . . 15 (𝑇 ∈ (𝐴 GrpHom 𝐶) → 𝑇 ∈ (𝐴 MndHom 𝐶))
74 eqid 2610 . . . . . . . . . . . . . . . 16 (0g𝐴) = (0g𝐴)
7574, 2mhm0 17166 . . . . . . . . . . . . . . 15 (𝑇 ∈ (𝐴 MndHom 𝐶) → (𝑇‘(0g𝐴)) = (0g𝐶))
7672, 73, 753syl 18 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑇‘(0g𝐴)) = (0g𝐶))
7776oveq2d 6565 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑥𝐸𝑌) · (𝑇‘(0g𝐴))) = ((𝑥𝐸𝑌) · (0g𝐶)))
785ply1ring 19439 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
793, 78syl 17 . . . . . . . . . . . . . . . 16 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
806matlmod 20054 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐶 ∈ LMod)
8179, 80sylan2 490 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ LMod)
8281ad3antrrr 762 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝐶 ∈ LMod)
8379adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ Ring)
84 eqid 2610 . . . . . . . . . . . . . . . . . . 19 (mulGrp‘𝑃) = (mulGrp‘𝑃)
8584ringmgp 18376 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
8683, 85syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (mulGrp‘𝑃) ∈ Mnd)
8786ad3antrrr 762 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (mulGrp‘𝑃) ∈ Mnd)
88 simpr 476 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
893adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
90 eqid 2610 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑃) = (Base‘𝑃)
9142, 5, 90vr1cl 19408 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ Ring → 𝑌 ∈ (Base‘𝑃))
9289, 91syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ (Base‘𝑃))
9392ad3antrrr 762 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑌 ∈ (Base‘𝑃))
9484, 90mgpbas 18318 . . . . . . . . . . . . . . . . 17 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
9594, 41mulgnn0cl 17381 . . . . . . . . . . . . . . . 16 (((mulGrp‘𝑃) ∈ Mnd ∧ 𝑥 ∈ ℕ0𝑌 ∈ (Base‘𝑃)) → (𝑥𝐸𝑌) ∈ (Base‘𝑃))
9687, 88, 93, 95syl3anc 1318 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑥𝐸𝑌) ∈ (Base‘𝑃))
975ply1crng 19389 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
986matsca2 20045 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝐶))
9997, 98sylan2 490 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 = (Scalar‘𝐶))
10099eqcomd 2616 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Scalar‘𝐶) = 𝑃)
101100ad3antrrr 762 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (Scalar‘𝐶) = 𝑃)
102101fveq2d 6107 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (Base‘(Scalar‘𝐶)) = (Base‘𝑃))
10396, 102eleqtrrd 2691 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑥𝐸𝑌) ∈ (Base‘(Scalar‘𝐶)))
104 eqid 2610 . . . . . . . . . . . . . . 15 (Scalar‘𝐶) = (Scalar‘𝐶)
105 eqid 2610 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
106104, 40, 105, 2lmodvs0 18720 . . . . . . . . . . . . . 14 ((𝐶 ∈ LMod ∧ (𝑥𝐸𝑌) ∈ (Base‘(Scalar‘𝐶))) → ((𝑥𝐸𝑌) · (0g𝐶)) = (0g𝐶))
10782, 103, 106syl2anc 691 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑥𝐸𝑌) · (0g𝐶)) = (0g𝐶))
10877, 107eqtrd 2644 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑥𝐸𝑌) · (𝑇‘(0g𝐴))) = (0g𝐶))
10969, 108sylan9eqr 2666 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑀𝑥) = (0g𝐴)) → ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))) = (0g𝐶))
11067, 109eqtrd 2644 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑀𝑥) = (0g𝐴)) → 𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶))
111110ex 449 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑀𝑥) = (0g𝐴) → 𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶)))
112111imim2d 55 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑦 < 𝑥 → (𝑀𝑥) = (0g𝐴)) → (𝑦 < 𝑥𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶))))
113112ralimdva 2945 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑀𝑥) = (0g𝐴)) → ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶))))
114113reximdva 3000 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) → (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑀𝑥) = (0g𝐴)) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶))))
11552, 114syld 46 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) → (𝑀 finSupp (0g𝐴) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶))))
116115impr 647 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶)))
11746, 48, 116mptnn0fsupp 12659 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))) finSupp (0g𝐶))
1181, 2, 10, 18, 20, 30, 44, 117gsummptmhm 18163 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (𝐼‘((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))) = (𝐼‘(𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))))
119 simpll 786 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
1205, 6, 1, 21, 22, 23, 11, 38, 14, 25, 41, 42, 40, 39monmat2matmon 20448 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ ((𝑀𝑛) ∈ 𝐾𝑛 ∈ ℕ0)) → (𝐼‘((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))) = ((𝑀𝑛) (𝑛 𝑋)))
121119, 36, 37, 120syl12anc 1316 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → (𝐼‘((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))) = ((𝑀𝑛) (𝑛 𝑋)))
122121mpteq2dva 4672 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → (𝑛 ∈ ℕ0 ↦ (𝐼‘((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))))) = (𝑛 ∈ ℕ0 ↦ ((𝑀𝑛) (𝑛 𝑋))))
123122oveq2d 6565 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (𝐼‘((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑀𝑛) (𝑛 𝑋)))))
124118, 123eqtr3d 2646 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → (𝐼‘(𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑀𝑛) (𝑛 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  csb 3499   class class class wbr 4583  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  Fincfn 7841   finSupp cfsupp 8158   < clt 9953  0cn0 11169  Basecbs 15695  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923   Σg cgsu 15924  Mndcmnd 17117   MndHom cmhm 17156  .gcmg 17363   GrpHom cghm 17480  CMndccmn 18016  mulGrpcmgp 18312  Ringcrg 18370  CRingccrg 18371  LModclmod 18686  var1cv1 19367  Poly1cpl1 19368   Mat cmat 20032   matToPolyMat cmat2pmat 20328   pMatToMatPoly cpm2mp 20416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-subrg 18601  df-lmod 18688  df-lss 18754  df-sra 18993  df-rgmod 18994  df-assa 19133  df-ascl 19135  df-psr 19177  df-mvr 19178  df-mpl 19179  df-opsr 19181  df-psr1 19371  df-vr1 19372  df-ply1 19373  df-coe1 19374  df-dsmm 19895  df-frlm 19910  df-mamu 20009  df-mat 20033  df-mat2pmat 20331  df-decpmat 20387  df-pm2mp 20417
This theorem is referenced by:  cpmidpmat  20497  cpmadumatpoly  20507
  Copyright terms: Public domain W3C validator