MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2cpminvid2 Structured version   Visualization version   GIF version

Theorem m2cpminvid2 20379
Description: The transformation applied to the inverse transformation of a constant polynomial matrix over the ring 𝑅 results in the matrix itself. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 14-Dec-2019.)
Hypotheses
Ref Expression
m2cpminvid2.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
m2cpminvid2.i 𝐼 = (𝑁 cPolyMatToMat 𝑅)
m2cpminvid2.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
m2cpminvid2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝐼𝑀)) = 𝑀)

Proof of Theorem m2cpminvid2
Dummy variables 𝑖 𝑗 𝑥 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 m2cpminvid2.i . . . 4 𝐼 = (𝑁 cPolyMatToMat 𝑅)
2 m2cpminvid2.s . . . 4 𝑆 = (𝑁 ConstPolyMat 𝑅)
31, 2cpm2mval 20374 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝐼𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
43fveq2d 6107 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝐼𝑀)) = (𝑇‘(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))))
5 simp1 1054 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → 𝑁 ∈ Fin)
6 simp2 1055 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → 𝑅 ∈ Ring)
7 eqid 2610 . . . . 5 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
8 eqid 2610 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
9 eqid 2610 . . . . 5 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
10 eqid 2610 . . . . . . 7 (𝑁 Mat (Poly1𝑅)) = (𝑁 Mat (Poly1𝑅))
11 eqid 2610 . . . . . . 7 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
12 eqid 2610 . . . . . . 7 (Base‘(𝑁 Mat (Poly1𝑅))) = (Base‘(𝑁 Mat (Poly1𝑅)))
13 simp2 1055 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁𝑦𝑁) → 𝑥𝑁)
14 simp3 1056 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁𝑦𝑁) → 𝑦𝑁)
15 eqid 2610 . . . . . . . . 9 (Poly1𝑅) = (Poly1𝑅)
162, 15, 10, 12cpmatpmat 20334 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → 𝑀 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
17163ad2ant1 1075 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁𝑦𝑁) → 𝑀 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
1810, 11, 12, 13, 14, 17matecld 20051 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁𝑦𝑁) → (𝑥𝑀𝑦) ∈ (Base‘(Poly1𝑅)))
19 0nn0 11184 . . . . . 6 0 ∈ ℕ0
20 eqid 2610 . . . . . . 7 (coe1‘(𝑥𝑀𝑦)) = (coe1‘(𝑥𝑀𝑦))
2120, 11, 15, 8coe1fvalcl 19403 . . . . . 6 (((𝑥𝑀𝑦) ∈ (Base‘(Poly1𝑅)) ∧ 0 ∈ ℕ0) → ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅))
2218, 19, 21sylancl 693 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁𝑦𝑁) → ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅))
237, 8, 9, 5, 6, 22matbas2d 20048 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(𝑁 Mat 𝑅)))
24 m2cpminvid2.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
25 eqid 2610 . . . . 5 (algSc‘(Poly1𝑅)) = (algSc‘(Poly1𝑅))
2624, 7, 9, 15, 25mat2pmatval 20348 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(𝑁 Mat 𝑅))) → (𝑇‘(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘(𝑖(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))𝑗))))
275, 6, 23, 26syl3anc 1318 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘(𝑖(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))𝑗))))
28 eqidd 2611 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
29 oveq12 6558 . . . . . . . . 9 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑥𝑀𝑦) = (𝑖𝑀𝑗))
3029fveq2d 6107 . . . . . . . 8 ((𝑥 = 𝑖𝑦 = 𝑗) → (coe1‘(𝑥𝑀𝑦)) = (coe1‘(𝑖𝑀𝑗)))
3130fveq1d 6105 . . . . . . 7 ((𝑥 = 𝑖𝑦 = 𝑗) → ((coe1‘(𝑥𝑀𝑦))‘0) = ((coe1‘(𝑖𝑀𝑗))‘0))
3231adantl 481 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) ∧ (𝑥 = 𝑖𝑦 = 𝑗)) → ((coe1‘(𝑥𝑀𝑦))‘0) = ((coe1‘(𝑖𝑀𝑗))‘0))
33 simp2 1055 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
34 simp3 1056 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
35 fvex 6113 . . . . . . 7 ((coe1‘(𝑖𝑀𝑗))‘0) ∈ V
3635a1i 11 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑀𝑗))‘0) ∈ V)
3728, 32, 33, 34, 36ovmpt2d 6686 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))𝑗) = ((coe1‘(𝑖𝑀𝑗))‘0))
3837fveq2d 6107 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘(Poly1𝑅))‘(𝑖(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))𝑗)) = ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))
3938mpt2eq3dva 6617 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘(𝑖(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))))
4027, 39eqtrd 2644 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))))
412, 15m2cpminvid2lem 20378 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
42 simpl2 1058 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑅 ∈ Ring)
43 simprl 790 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑥𝑁)
44 simprr 792 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑦𝑁)
4516adantr 480 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑀 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
4610, 11, 12, 43, 44, 45matecld 20051 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥𝑀𝑦) ∈ (Base‘(Poly1𝑅)))
4746, 19, 21sylancl 693 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅))
4815, 25, 8, 11ply1sclcl 19477 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(Poly1𝑅)))
4942, 47, 48syl2anc 691 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(Poly1𝑅)))
50 eqid 2610 . . . . . . . . 9 (coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0))) = (coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))
5115, 11, 50, 20ply1coe1eq 19489 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(Poly1𝑅)) ∧ (𝑥𝑀𝑦) ∈ (Base‘(Poly1𝑅))) → (∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ↔ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦)))
5251bicomd 212 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ (Base‘(Poly1𝑅)) ∧ (𝑥𝑀𝑦) ∈ (Base‘(Poly1𝑅))) → (((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛)))
5342, 49, 46, 52syl3anc 1318 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛)))
5441, 53mpbird 246 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦))
5554ralrimivva 2954 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → ∀𝑥𝑁𝑦𝑁 ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦))
56 eqidd 2611 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))))
57 oveq12 6558 . . . . . . . . . . . 12 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑖𝑀𝑗) = (𝑥𝑀𝑦))
5857fveq2d 6107 . . . . . . . . . . 11 ((𝑖 = 𝑥𝑗 = 𝑦) → (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑥𝑀𝑦)))
5958fveq1d 6105 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = 𝑦) → ((coe1‘(𝑖𝑀𝑗))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))
6059fveq2d 6107 . . . . . . . . 9 ((𝑖 = 𝑥𝑗 = 𝑦) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)) = ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))
6160adantl 481 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) ∧ (𝑖 = 𝑥𝑗 = 𝑦)) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)) = ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))
62 simplr 788 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → 𝑥𝑁)
63 simpr 476 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → 𝑦𝑁)
64 fvex 6113 . . . . . . . . 9 ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ V
6564a1i 11 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) ∈ V)
6656, 61, 62, 63, 65ovmpt2d 6686 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)))
6766eqeq1d 2612 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑥𝑁) ∧ 𝑦𝑁) → ((𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦) ↔ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦)))
6867anasss 677 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ((𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦) ↔ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦)))
69682ralbidva 2971 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦) ↔ ∀𝑥𝑁𝑦𝑁 ((algSc‘(Poly1𝑅))‘((coe1‘(𝑥𝑀𝑦))‘0)) = (𝑥𝑀𝑦)))
7055, 69mpbird 246 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦))
71 fvex 6113 . . . . . 6 (Poly1𝑅) ∈ V
7271a1i 11 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (Poly1𝑅) ∈ V)
7363ad2ant1 1075 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
74163ad2ant1 1075 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑀 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
7510, 11, 12, 33, 34, 74matecld 20051 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ (Base‘(Poly1𝑅)))
76 eqid 2610 . . . . . . . 8 (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑖𝑀𝑗))
7776, 11, 15, 8coe1fvalcl 19403 . . . . . . 7 (((𝑖𝑀𝑗) ∈ (Base‘(Poly1𝑅)) ∧ 0 ∈ ℕ0) → ((coe1‘(𝑖𝑀𝑗))‘0) ∈ (Base‘𝑅))
7875, 19, 77sylancl 693 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑀𝑗))‘0) ∈ (Base‘𝑅))
7915, 25, 8, 11ply1sclcl 19477 . . . . . 6 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑖𝑀𝑗))‘0) ∈ (Base‘𝑅)) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)) ∈ (Base‘(Poly1𝑅)))
8073, 78, 79syl2anc 691 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)) ∈ (Base‘(Poly1𝑅)))
8110, 11, 12, 5, 72, 80matbas2d 20048 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
8210, 12eqmat 20049 . . . 4 (((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) ∈ (Base‘(𝑁 Mat (Poly1𝑅))) ∧ 𝑀 ∈ (Base‘(𝑁 Mat (Poly1𝑅)))) → ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) = 𝑀 ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦)))
8381, 16, 82syl2anc 691 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) = 𝑀 ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0)))𝑦) = (𝑥𝑀𝑦)))
8470, 83mpbird 246 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘((coe1‘(𝑖𝑀𝑗))‘0))) = 𝑀)
854, 40, 843eqtrd 2648 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝐼𝑀)) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cfv 5804  (class class class)co 6549  cmpt2 6551  Fincfn 7841  0cc0 9815  0cn0 11169  Basecbs 15695  Ringcrg 18370  algSccascl 19132  Poly1cpl1 19368  coe1cco1 19369   Mat cmat 20032   ConstPolyMat ccpmat 20327   matToPolyMat cmat2pmat 20328   cPolyMatToMat ccpmat2mat 20329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-srg 18329  df-ring 18372  df-subrg 18601  df-lmod 18688  df-lss 18754  df-sra 18993  df-rgmod 18994  df-ascl 19135  df-psr 19177  df-mvr 19178  df-mpl 19179  df-opsr 19181  df-psr1 19371  df-vr1 19372  df-ply1 19373  df-coe1 19374  df-dsmm 19895  df-frlm 19910  df-mat 20033  df-cpmat 20330  df-mat2pmat 20331  df-cpmat2mat 20332
This theorem is referenced by:  m2cpmfo  20380  m2cpminv  20384  cpmadumatpoly  20507  cayhamlem4  20512
  Copyright terms: Public domain W3C validator