MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkfoclwwlk Structured version   Visualization version   GIF version

Theorem clwlkfoclwwlk 26372
Description: There is an onto function between the set of closed walks (defined as words) of length n and the set of closed walks of length n (in an undirected simple graph). (Contributed by Alexander van der Vekens, 30-Jun-2018.)
Hypotheses
Ref Expression
clwlkfclwwlk.1 𝐴 = (1st𝑐)
clwlkfclwwlk.2 𝐵 = (2nd𝑐)
clwlkfclwwlk.c 𝐶 = {𝑐 ∈ (𝑉 ClWalks 𝐸) ∣ (#‘𝐴) = 𝑁}
clwlkfclwwlk.f 𝐹 = (𝑐𝐶 ↦ (𝐵 substr ⟨0, (#‘𝐴)⟩))
Assertion
Ref Expression
clwlkfoclwwlk ((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) → 𝐹:𝐶onto→((𝑉 ClWWalksN 𝐸)‘𝑁))
Distinct variable groups:   𝐸,𝑐   𝑁,𝑐   𝑉,𝑐   𝐶,𝑐   𝐹,𝑐
Allowed substitution hints:   𝐴(𝑐)   𝐵(𝑐)

Proof of Theorem clwlkfoclwwlk
Dummy variables 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clwlkfclwwlk.1 . . 3 𝐴 = (1st𝑐)
2 clwlkfclwwlk.2 . . 3 𝐵 = (2nd𝑐)
3 clwlkfclwwlk.c . . 3 𝐶 = {𝑐 ∈ (𝑉 ClWalks 𝐸) ∣ (#‘𝐴) = 𝑁}
4 clwlkfclwwlk.f . . 3 𝐹 = (𝑐𝐶 ↦ (𝐵 substr ⟨0, (#‘𝐴)⟩))
51, 2, 3, 4clwlkfclwwlk 26371 . 2 ((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) → 𝐹:𝐶⟶((𝑉 ClWWalksN 𝐸)‘𝑁))
6 clwwlknprop 26300 . . . . 5 (𝑤 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁)))
76adantl 481 . . . 4 (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ 𝑤 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁)) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁)))
8 simpl 472 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁) → 𝑁 ∈ ℕ0)
98anim2i 591 . . . . . . . . . . 11 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁)) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑁 ∈ ℕ0))
10 df-3an 1033 . . . . . . . . . . 11 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) ↔ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑁 ∈ ℕ0))
119, 10sylibr 223 . . . . . . . . . 10 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁)) → (𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0))
12113adant2 1073 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁)) → (𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0))
1312adantl 481 . . . . . . . 8 (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) → (𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0))
14 isclwwlkn 26297 . . . . . . . 8 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝑤 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ↔ (𝑤 ∈ (𝑉 ClWWalks 𝐸) ∧ (#‘𝑤) = 𝑁)))
1513, 14syl 17 . . . . . . 7 (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) → (𝑤 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ↔ (𝑤 ∈ (𝑉 ClWWalks 𝐸) ∧ (#‘𝑤) = 𝑁)))
16 simpl1 1057 . . . . . . . . . 10 (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) → 𝑉 USGrph 𝐸)
17 simpr2 1061 . . . . . . . . . 10 (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) → 𝑤 ∈ Word 𝑉)
18 eleq1 2676 . . . . . . . . . . . . . . . 16 ((#‘𝑤) = 𝑁 → ((#‘𝑤) ∈ ℙ ↔ 𝑁 ∈ ℙ))
19 prmnn 15226 . . . . . . . . . . . . . . . . 17 ((#‘𝑤) ∈ ℙ → (#‘𝑤) ∈ ℕ)
2019nnge1d 10940 . . . . . . . . . . . . . . . 16 ((#‘𝑤) ∈ ℙ → 1 ≤ (#‘𝑤))
2118, 20syl6bir 243 . . . . . . . . . . . . . . 15 ((#‘𝑤) = 𝑁 → (𝑁 ∈ ℙ → 1 ≤ (#‘𝑤)))
2221adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁) → (𝑁 ∈ ℙ → 1 ≤ (#‘𝑤)))
23223ad2ant3 1077 . . . . . . . . . . . . 13 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁)) → (𝑁 ∈ ℙ → 1 ≤ (#‘𝑤)))
2423com12 32 . . . . . . . . . . . 12 (𝑁 ∈ ℙ → (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁)) → 1 ≤ (#‘𝑤)))
25243ad2ant3 1077 . . . . . . . . . . 11 ((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) → (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁)) → 1 ≤ (#‘𝑤)))
2625imp 444 . . . . . . . . . 10 (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) → 1 ≤ (#‘𝑤))
27 clwlkisclwwlk2 26318 . . . . . . . . . 10 ((𝑉 USGrph 𝐸𝑤 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑤)) → (∃𝑓 𝑓(𝑉 ClWalks 𝐸)(𝑤 ++ ⟨“(𝑤‘0)”⟩) ↔ 𝑤 ∈ (𝑉 ClWWalks 𝐸)))
2816, 17, 26, 27syl3anc 1318 . . . . . . . . 9 (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) → (∃𝑓 𝑓(𝑉 ClWalks 𝐸)(𝑤 ++ ⟨“(𝑤‘0)”⟩) ↔ 𝑤 ∈ (𝑉 ClWWalks 𝐸)))
2928bicomd 212 . . . . . . . 8 (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) → (𝑤 ∈ (𝑉 ClWWalks 𝐸) ↔ ∃𝑓 𝑓(𝑉 ClWalks 𝐸)(𝑤 ++ ⟨“(𝑤‘0)”⟩)))
3029anbi1d 737 . . . . . . 7 (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) → ((𝑤 ∈ (𝑉 ClWWalks 𝐸) ∧ (#‘𝑤) = 𝑁) ↔ (∃𝑓 𝑓(𝑉 ClWalks 𝐸)(𝑤 ++ ⟨“(𝑤‘0)”⟩) ∧ (#‘𝑤) = 𝑁)))
3115, 30bitrd 267 . . . . . 6 (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) → (𝑤 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ↔ (∃𝑓 𝑓(𝑉 ClWalks 𝐸)(𝑤 ++ ⟨“(𝑤‘0)”⟩) ∧ (#‘𝑤) = 𝑁)))
32 df-br 4584 . . . . . . . . . . 11 (𝑓(𝑉 ClWalks 𝐸)(𝑤 ++ ⟨“(𝑤‘0)”⟩) ↔ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸))
33 simpl 472 . . . . . . . . . . . . . . 15 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁)) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸))
34 prmnn 15226 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
3534nnge1d 10940 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℙ → 1 ≤ 𝑁)
36353ad2ant3 1077 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) → 1 ≤ 𝑁)
3736adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) → 1 ≤ 𝑁)
38 breq2 4587 . . . . . . . . . . . . . . . . . . . . . . . 24 ((#‘𝑤) = 𝑁 → (1 ≤ (#‘𝑤) ↔ 1 ≤ 𝑁))
3938adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁) → (1 ≤ (#‘𝑤) ↔ 1 ≤ 𝑁))
40393ad2ant3 1077 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁)) → (1 ≤ (#‘𝑤) ↔ 1 ≤ 𝑁))
4140adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) → (1 ≤ (#‘𝑤) ↔ 1 ≤ 𝑁))
4237, 41mpbird 246 . . . . . . . . . . . . . . . . . . . 20 (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) → 1 ≤ (#‘𝑤))
4317, 42jca 553 . . . . . . . . . . . . . . . . . . 19 (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) → (𝑤 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑤)))
4443adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁) → (𝑤 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑤)))
45 clwlkswlks 26286 . . . . . . . . . . . . . . . . . 18 (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 Walks 𝐸))
46 wlklenvclwlk 26366 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑤)) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 Walks 𝐸) → (#‘𝑓) = (#‘𝑤)))
4744, 45, 46syl2im 39 . . . . . . . . . . . . . . . . 17 ((((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) → (#‘𝑓) = (#‘𝑤)))
4847impcom 445 . . . . . . . . . . . . . . . 16 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁)) → (#‘𝑓) = (#‘𝑤))
49 vex 3176 . . . . . . . . . . . . . . . . . . . 20 𝑓 ∈ V
50 ovex 6577 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ++ ⟨“(𝑤‘0)”⟩) ∈ V
5149, 50op1st 7067 . . . . . . . . . . . . . . . . . . 19 (1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) = 𝑓
5251a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) → (1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) = 𝑓)
5352fveq2d 6107 . . . . . . . . . . . . . . . . 17 (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) → (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) = (#‘𝑓))
5453ad2antrl 760 . . . . . . . . . . . . . . . 16 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁)) → (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) = (#‘𝑓))
55 eqcom 2617 . . . . . . . . . . . . . . . . . 18 ((#‘𝑤) = 𝑁𝑁 = (#‘𝑤))
5655biimpi 205 . . . . . . . . . . . . . . . . 17 ((#‘𝑤) = 𝑁𝑁 = (#‘𝑤))
5756ad2antll 761 . . . . . . . . . . . . . . . 16 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁)) → 𝑁 = (#‘𝑤))
5848, 54, 573eqtr4d 2654 . . . . . . . . . . . . . . 15 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁)) → (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) = 𝑁)
591fveq2i 6106 . . . . . . . . . . . . . . . . . 18 (#‘𝐴) = (#‘(1st𝑐))
6059eqeq1i 2615 . . . . . . . . . . . . . . . . 17 ((#‘𝐴) = 𝑁 ↔ (#‘(1st𝑐)) = 𝑁)
61 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (1st𝑐) = (1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))
6261fveq2d 6107 . . . . . . . . . . . . . . . . . 18 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (#‘(1st𝑐)) = (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
6362eqeq1d 2612 . . . . . . . . . . . . . . . . 17 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((#‘(1st𝑐)) = 𝑁 ↔ (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) = 𝑁))
6460, 63syl5bb 271 . . . . . . . . . . . . . . . 16 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((#‘𝐴) = 𝑁 ↔ (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) = 𝑁))
6564, 3elrab2 3333 . . . . . . . . . . . . . . 15 (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶 ↔ (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) = 𝑁))
6633, 58, 65sylanbrc 695 . . . . . . . . . . . . . 14 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁)) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶)
6743, 45, 46syl2im 39 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) → (#‘𝑓) = (#‘𝑤)))
6867ad2antrl 760 . . . . . . . . . . . . . . . . . . . . 21 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁)) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) → (#‘𝑓) = (#‘𝑤)))
6968imp 444 . . . . . . . . . . . . . . . . . . . 20 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸)) → (#‘𝑓) = (#‘𝑤))
7069opeq2d 4347 . . . . . . . . . . . . . . . . . . 19 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸)) → ⟨0, (#‘𝑓)⟩ = ⟨0, (#‘𝑤)⟩)
7170oveq2d 6565 . . . . . . . . . . . . . . . . . 18 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸)) → ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑓)⟩) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑤)⟩))
72 simpr 476 . . . . . . . . . . . . . . . . . . . 20 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸)) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸))
73 eqeq2 2621 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 = (#‘𝑤) → ((#‘𝑓) = 𝑁 ↔ (#‘𝑓) = (#‘𝑤)))
7473eqcoms 2618 . . . . . . . . . . . . . . . . . . . . . . . 24 ((#‘𝑤) = 𝑁 → ((#‘𝑓) = 𝑁 ↔ (#‘𝑓) = (#‘𝑤)))
7574imbi2d 329 . . . . . . . . . . . . . . . . . . . . . . 23 ((#‘𝑤) = 𝑁 → ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) → (#‘𝑓) = 𝑁) ↔ (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) → (#‘𝑓) = (#‘𝑤))))
7675ad2antll 761 . . . . . . . . . . . . . . . . . . . . . 22 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁)) → ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) → (#‘𝑓) = 𝑁) ↔ (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) → (#‘𝑓) = (#‘𝑤))))
7768, 76mpbird 246 . . . . . . . . . . . . . . . . . . . . 21 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁)) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) → (#‘𝑓) = 𝑁))
7877imp 444 . . . . . . . . . . . . . . . . . . . 20 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸)) → (#‘𝑓) = 𝑁)
7951a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) = 𝑓)
8079fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) = (#‘𝑓))
8162, 80eqtrd 2644 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (#‘(1st𝑐)) = (#‘𝑓))
8281eqeq1d 2612 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((#‘(1st𝑐)) = 𝑁 ↔ (#‘𝑓) = 𝑁))
8360, 82syl5bb 271 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((#‘𝐴) = 𝑁 ↔ (#‘𝑓) = 𝑁))
8483, 3elrab2 3333 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶 ↔ (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (#‘𝑓) = 𝑁))
8572, 78, 84sylanbrc 695 . . . . . . . . . . . . . . . . . . 19 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸)) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶)
86 ovex 6577 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑓)⟩) ∈ V
8759opeq2i 4344 . . . . . . . . . . . . . . . . . . . . . 22 ⟨0, (#‘𝐴)⟩ = ⟨0, (#‘(1st𝑐))⟩
882, 87oveq12i 6561 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 substr ⟨0, (#‘𝐴)⟩) = ((2nd𝑐) substr ⟨0, (#‘(1st𝑐))⟩)
89 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (2nd𝑐) = (2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))
9062opeq2d 4347 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ⟨0, (#‘(1st𝑐))⟩ = ⟨0, (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))⟩)
9189, 90oveq12d 6567 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((2nd𝑐) substr ⟨0, (#‘(1st𝑐))⟩) = ((2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) substr ⟨0, (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))⟩))
9249, 50op2nd 7068 . . . . . . . . . . . . . . . . . . . . . . 23 (2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) = (𝑤 ++ ⟨“(𝑤‘0)”⟩)
9351fveq2i 6106 . . . . . . . . . . . . . . . . . . . . . . . 24 (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) = (#‘𝑓)
9493opeq2i 4344 . . . . . . . . . . . . . . . . . . . . . . 23 ⟨0, (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))⟩ = ⟨0, (#‘𝑓)⟩
9592, 94oveq12i 6561 . . . . . . . . . . . . . . . . . . . . . 22 ((2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) substr ⟨0, (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))⟩) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑓)⟩)
9691, 95syl6eq 2660 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((2nd𝑐) substr ⟨0, (#‘(1st𝑐))⟩) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑓)⟩))
9788, 96syl5eq 2656 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (𝐵 substr ⟨0, (#‘𝐴)⟩) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑓)⟩))
9897, 4fvmptg 6189 . . . . . . . . . . . . . . . . . . 19 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶 ∧ ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑓)⟩) ∈ V) → (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑓)⟩))
9985, 86, 98sylancl 693 . . . . . . . . . . . . . . . . . 18 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸)) → (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑓)⟩))
10043ad2antrl 760 . . . . . . . . . . . . . . . . . . . 20 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁)) → (𝑤 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑤)))
101100adantr 480 . . . . . . . . . . . . . . . . . . 19 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸)) → (𝑤 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑤)))
102 simpl 472 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑤)) → 𝑤 ∈ Word 𝑉)
103 wrdsymb1 13197 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑤 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑤)) → (𝑤‘0) ∈ 𝑉)
104103s1cld 13236 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑤)) → ⟨“(𝑤‘0)”⟩ ∈ Word 𝑉)
105 eqidd 2611 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑤)) → (#‘𝑤) = (#‘𝑤))
106 swrdccatid 13348 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ Word 𝑉 ∧ ⟨“(𝑤‘0)”⟩ ∈ Word 𝑉 ∧ (#‘𝑤) = (#‘𝑤)) → ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑤)⟩) = 𝑤)
107102, 104, 105, 106syl3anc 1318 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑤)) → ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑤)⟩) = 𝑤)
108107eqcomd 2616 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑤)) → 𝑤 = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑤)⟩))
109101, 108syl 17 . . . . . . . . . . . . . . . . . 18 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸)) → 𝑤 = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑤)⟩))
11071, 99, 1093eqtr4rd 2655 . . . . . . . . . . . . . . . . 17 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸)) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))
111110ex 449 . . . . . . . . . . . . . . . 16 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁)) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
112111adantr 480 . . . . . . . . . . . . . . 15 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁)) ∧ 𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
113 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (𝐹𝑐) = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))
114113eqeq2d 2620 . . . . . . . . . . . . . . . . 17 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (𝑤 = (𝐹𝑐) ↔ 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
115114imbi2d 329 . . . . . . . . . . . . . . . 16 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) → 𝑤 = (𝐹𝑐)) ↔ (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))))
116115adantl 481 . . . . . . . . . . . . . . 15 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁)) ∧ 𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) → ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) → 𝑤 = (𝐹𝑐)) ↔ (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))))
117112, 116mpbird 246 . . . . . . . . . . . . . 14 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁)) ∧ 𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) → 𝑤 = (𝐹𝑐)))
11866, 117rspcimedv 3284 . . . . . . . . . . . . 13 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) ∧ (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁)) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
119118ex 449 . . . . . . . . . . . 12 (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) → ((((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) → ∃𝑐𝐶 𝑤 = (𝐹𝑐))))
120119pm2.43b 53 . . . . . . . . . . 11 ((((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (𝑉 ClWalks 𝐸) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
12132, 120syl5bi 231 . . . . . . . . . 10 ((((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁) → (𝑓(𝑉 ClWalks 𝐸)(𝑤 ++ ⟨“(𝑤‘0)”⟩) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
122121exlimdv 1848 . . . . . . . . 9 ((((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) ∧ (#‘𝑤) = 𝑁) → (∃𝑓 𝑓(𝑉 ClWalks 𝐸)(𝑤 ++ ⟨“(𝑤‘0)”⟩) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
123122ex 449 . . . . . . . 8 (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) → ((#‘𝑤) = 𝑁 → (∃𝑓 𝑓(𝑉 ClWalks 𝐸)(𝑤 ++ ⟨“(𝑤‘0)”⟩) → ∃𝑐𝐶 𝑤 = (𝐹𝑐))))
124123com23 84 . . . . . . 7 (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) → (∃𝑓 𝑓(𝑉 ClWalks 𝐸)(𝑤 ++ ⟨“(𝑤‘0)”⟩) → ((#‘𝑤) = 𝑁 → ∃𝑐𝐶 𝑤 = (𝐹𝑐))))
125124impd 446 . . . . . 6 (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) → ((∃𝑓 𝑓(𝑉 ClWalks 𝐸)(𝑤 ++ ⟨“(𝑤‘0)”⟩) ∧ (#‘𝑤) = 𝑁) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
12631, 125sylbid 229 . . . . 5 (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁))) → (𝑤 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
127126impancom 455 . . . 4 (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ 𝑤 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁)) → (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑤 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑤) = 𝑁)) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
1287, 127mpd 15 . . 3 (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) ∧ 𝑤 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁)) → ∃𝑐𝐶 𝑤 = (𝐹𝑐))
129128ralrimiva 2949 . 2 ((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) → ∀𝑤 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁)∃𝑐𝐶 𝑤 = (𝐹𝑐))
130 dffo3 6282 . 2 (𝐹:𝐶onto→((𝑉 ClWWalksN 𝐸)‘𝑁) ↔ (𝐹:𝐶⟶((𝑉 ClWWalksN 𝐸)‘𝑁) ∧ ∀𝑤 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁)∃𝑐𝐶 𝑤 = (𝐹𝑐)))
1315, 129, 130sylanbrc 695 1 ((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑁 ∈ ℙ) → 𝐹:𝐶onto→((𝑉 ClWWalksN 𝐸)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cop 4131   class class class wbr 4583  cmpt 4643  wf 5800  ontowfo 5802  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  Fincfn 7841  0cc0 9815  1c1 9816  cle 9954  0cn0 11169  #chash 12979  Word cword 13146   ++ cconcat 13148  ⟨“cs1 13149   substr csubstr 13150  cprime 15223   USGrph cusg 25859   Walks cwalk 26026   ClWalks cclwlk 26275   ClWWalks cclwwlk 26276   ClWWalksN cclwwlkn 26277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-prm 15224  df-usgra 25862  df-wlk 26036  df-clwlk 26278  df-clwwlk 26279  df-clwwlkn 26280
This theorem is referenced by:  clwlkf1oclwwlk  26378
  Copyright terms: Public domain W3C validator