Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspcimedv | Structured version Visualization version GIF version |
Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rspcimdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
rspcimedv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) |
Ref | Expression |
---|---|
rspcimedv | ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcimdv.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | rspcimedv.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) | |
3 | 2 | con3d 147 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (¬ 𝜓 → ¬ 𝜒)) |
4 | 1, 3 | rspcimdv 3283 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ¬ 𝜓 → ¬ 𝜒)) |
5 | 4 | con2d 128 | . 2 ⊢ (𝜑 → (𝜒 → ¬ ∀𝑥 ∈ 𝐵 ¬ 𝜓)) |
6 | dfrex2 2979 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐵 ¬ 𝜓) | |
7 | 5, 6 | syl6ibr 241 | 1 ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ∃wrex 2897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-v 3175 |
This theorem is referenced by: rspcedv 3286 scshwfzeqfzo 13423 symgfixfo 17682 slesolex 20307 clwlkfoclwwlk 26372 el2wlkonot 26396 el2spthonot 26397 el2wlkonotot0 26399 usg2spot2nb 26592 usgr2pthlem 40969 clwlksfoclwwlk 41270 fusgr2wsp2nb 41498 |
Copyright terms: Public domain | W3C validator |