MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfixfo Structured version   Visualization version   GIF version

Theorem symgfixfo 17682
Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is an onto function. (Contributed by AV, 7-Jan-2019.)
Hypotheses
Ref Expression
symgfixf.p 𝑃 = (Base‘(SymGrp‘𝑁))
symgfixf.q 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
symgfixf.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgfixf.h 𝐻 = (𝑞𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾})))
Assertion
Ref Expression
symgfixfo ((𝑁𝑉𝐾𝑁) → 𝐻:𝑄onto𝑆)
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞   𝑁,𝑞   𝑄,𝑞   𝑆,𝑞
Allowed substitution hints:   𝐻(𝑞)   𝑉(𝑞)

Proof of Theorem symgfixfo
Dummy variables 𝑝 𝑖 𝑠 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgfixf.p . . . 4 𝑃 = (Base‘(SymGrp‘𝑁))
2 symgfixf.q . . . 4 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
3 symgfixf.s . . . 4 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
4 symgfixf.h . . . 4 𝐻 = (𝑞𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾})))
51, 2, 3, 4symgfixf 17679 . . 3 (𝐾𝑁𝐻:𝑄𝑆)
65adantl 481 . 2 ((𝑁𝑉𝐾𝑁) → 𝐻:𝑄𝑆)
7 eqeq1 2614 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑖 = 𝐾𝑗 = 𝐾))
8 fveq2 6103 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑠𝑖) = (𝑠𝑗))
97, 8ifbieq2d 4061 . . . . . . . . 9 (𝑖 = 𝑗 → if(𝑖 = 𝐾, 𝐾, (𝑠𝑖)) = if(𝑗 = 𝐾, 𝐾, (𝑠𝑗)))
109cbvmptv 4678 . . . . . . . 8 (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) = (𝑗𝑁 ↦ if(𝑗 = 𝐾, 𝐾, (𝑠𝑗)))
111, 2, 3, 4, 10symgfixfolem1 17681 . . . . . . 7 ((𝑁𝑉𝐾𝑁𝑠𝑆) → (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∈ 𝑄)
12113expa 1257 . . . . . 6 (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∈ 𝑄)
13 simpr 476 . . . . . . . . . . . . 13 ((𝑁𝑉𝐾𝑁) → 𝐾𝑁)
1413anim1i 590 . . . . . . . . . . . 12 (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → (𝐾𝑁𝑠𝑆))
1514adantl 481 . . . . . . . . . . 11 ((𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∧ ((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆)) → (𝐾𝑁𝑠𝑆))
16 eqid 2610 . . . . . . . . . . . 12 (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖)))
173, 16symgextres 17668 . . . . . . . . . . 11 ((𝐾𝑁𝑠𝑆) → ((𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ↾ (𝑁 ∖ {𝐾})) = 𝑠)
1815, 17syl 17 . . . . . . . . . 10 ((𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∧ ((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆)) → ((𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ↾ (𝑁 ∖ {𝐾})) = 𝑠)
1918eqcomd 2616 . . . . . . . . 9 ((𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∧ ((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆)) → 𝑠 = ((𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ↾ (𝑁 ∖ {𝐾})))
20 reseq1 5311 . . . . . . . . . . 11 (𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) → (𝑝 ↾ (𝑁 ∖ {𝐾})) = ((𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ↾ (𝑁 ∖ {𝐾})))
2120eqeq2d 2620 . . . . . . . . . 10 (𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) → (𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾})) ↔ 𝑠 = ((𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ↾ (𝑁 ∖ {𝐾}))))
2221adantr 480 . . . . . . . . 9 ((𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∧ ((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆)) → (𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾})) ↔ 𝑠 = ((𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ↾ (𝑁 ∖ {𝐾}))))
2319, 22mpbird 246 . . . . . . . 8 ((𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∧ ((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆)) → 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾})))
2423ex 449 . . . . . . 7 (𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) → (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
2524adantl 481 . . . . . 6 ((((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) ∧ 𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖)))) → (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
2612, 25rspcimedv 3284 . . . . 5 (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → ∃𝑝𝑄 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
2726pm2.43i 50 . . . 4 (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → ∃𝑝𝑄 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾})))
284fvtresfn 6193 . . . . . . 7 (𝑝𝑄 → (𝐻𝑝) = (𝑝 ↾ (𝑁 ∖ {𝐾})))
2928eqeq2d 2620 . . . . . 6 (𝑝𝑄 → (𝑠 = (𝐻𝑝) ↔ 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
3029adantl 481 . . . . 5 ((((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) ∧ 𝑝𝑄) → (𝑠 = (𝐻𝑝) ↔ 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
3130rexbidva 3031 . . . 4 (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → (∃𝑝𝑄 𝑠 = (𝐻𝑝) ↔ ∃𝑝𝑄 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
3227, 31mpbird 246 . . 3 (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → ∃𝑝𝑄 𝑠 = (𝐻𝑝))
3332ralrimiva 2949 . 2 ((𝑁𝑉𝐾𝑁) → ∀𝑠𝑆𝑝𝑄 𝑠 = (𝐻𝑝))
34 dffo3 6282 . 2 (𝐻:𝑄onto𝑆 ↔ (𝐻:𝑄𝑆 ∧ ∀𝑠𝑆𝑝𝑄 𝑠 = (𝐻𝑝)))
356, 33, 34sylanbrc 695 1 ((𝑁𝑉𝐾𝑁) → 𝐻:𝑄onto𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  cdif 3537  ifcif 4036  {csn 4125  cmpt 4643  cres 5040  wf 5800  ontowfo 5802  cfv 5804  Basecbs 15695  SymGrpcsymg 17620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-tset 15787  df-symg 17621
This theorem is referenced by:  symgfixf1o  17683
  Copyright terms: Public domain W3C validator