Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcimdv Structured version   Visualization version   GIF version

Theorem rspcimdv 3283
 Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rspcimdv.1 (𝜑𝐴𝐵)
rspcimdv.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rspcimdv (𝜑 → (∀𝑥𝐵 𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcimdv
StepHypRef Expression
1 df-ral 2901 . 2 (∀𝑥𝐵 𝜓 ↔ ∀𝑥(𝑥𝐵𝜓))
2 rspcimdv.1 . . 3 (𝜑𝐴𝐵)
3 simpr 476 . . . . . . 7 ((𝜑𝑥 = 𝐴) → 𝑥 = 𝐴)
43eleq1d 2672 . . . . . 6 ((𝜑𝑥 = 𝐴) → (𝑥𝐵𝐴𝐵))
54biimprd 237 . . . . 5 ((𝜑𝑥 = 𝐴) → (𝐴𝐵𝑥𝐵))
6 rspcimdv.2 . . . . 5 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
75, 6imim12d 79 . . . 4 ((𝜑𝑥 = 𝐴) → ((𝑥𝐵𝜓) → (𝐴𝐵𝜒)))
82, 7spcimdv 3263 . . 3 (𝜑 → (∀𝑥(𝑥𝐵𝜓) → (𝐴𝐵𝜒)))
92, 8mpid 43 . 2 (𝜑 → (∀𝑥(𝑥𝐵𝜓) → 𝜒))
101, 9syl5bi 231 1 (𝜑 → (∀𝑥𝐵 𝜓𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  ∀wal 1473   = wceq 1475   ∈ wcel 1977  ∀wral 2896 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-v 3175 This theorem is referenced by:  rspcimedv  3284  rspcdv  3285  wrd2ind  13329  mreexd  16125  mreexexlemd  16127  catcocl  16169  catass  16170  moni  16219  subccocl  16328  funcco  16354  fullfo  16395  fthf1  16400  nati  16438  acsfiindd  17000  chpscmat  20466  sizeusglecusglem1  26012  friendshipgt3  26648  lmxrge0  29326  funressnfv  39857  av-friendshipgt3  41552
 Copyright terms: Public domain W3C validator