Step | Hyp | Ref
| Expression |
1 | | el2wlkonot 26396 |
. 2
⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑉)) → (〈𝐴, 𝐵, 𝐶〉 ∈ (𝑅(𝑉 2WalksOnOt 𝐸)𝑆) ↔ ∃𝑏 ∈ 𝑉 (〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ ∃𝑓∃𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))))) |
2 | | 19.42vv 1907 |
. . . . . 6
⊢
(∃𝑓∃𝑝(〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) ↔ (〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ ∃𝑓∃𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))))) |
3 | 2 | bicomi 213 |
. . . . 5
⊢
((〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ ∃𝑓∃𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) ↔ ∃𝑓∃𝑝(〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))))) |
4 | 3 | rexbii 3023 |
. . . 4
⊢
(∃𝑏 ∈
𝑉 (〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ ∃𝑓∃𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) ↔ ∃𝑏 ∈ 𝑉 ∃𝑓∃𝑝(〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))))) |
5 | | rexcom4 3198 |
. . . 4
⊢
(∃𝑏 ∈
𝑉 ∃𝑓∃𝑝(〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) ↔ ∃𝑓∃𝑏 ∈ 𝑉 ∃𝑝(〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))))) |
6 | | rexcom4 3198 |
. . . . 5
⊢
(∃𝑏 ∈
𝑉 ∃𝑝(〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) ↔ ∃𝑝∃𝑏 ∈ 𝑉 (〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))))) |
7 | 6 | exbii 1764 |
. . . 4
⊢
(∃𝑓∃𝑏 ∈ 𝑉 ∃𝑝(〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) ↔ ∃𝑓∃𝑝∃𝑏 ∈ 𝑉 (〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))))) |
8 | 4, 5, 7 | 3bitri 285 |
. . 3
⊢
(∃𝑏 ∈
𝑉 (〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ ∃𝑓∃𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) ↔ ∃𝑓∃𝑝∃𝑏 ∈ 𝑉 (〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))))) |
9 | 8 | a1i 11 |
. 2
⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑉)) → (∃𝑏 ∈ 𝑉 (〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ ∃𝑓∃𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) ↔ ∃𝑓∃𝑝∃𝑏 ∈ 𝑉 (〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))))) |
10 | | eqcom 2617 |
. . . . . . . . . . 11
⊢
(〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ↔ 〈𝑅, 𝑏, 𝑆〉 = 〈𝐴, 𝐵, 𝐶〉) |
11 | | df-ot 4134 |
. . . . . . . . . . . 12
⊢
〈𝑅, 𝑏, 𝑆〉 = 〈〈𝑅, 𝑏〉, 𝑆〉 |
12 | | df-ot 4134 |
. . . . . . . . . . . 12
⊢
〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 |
13 | 11, 12 | eqeq12i 2624 |
. . . . . . . . . . 11
⊢
(〈𝑅, 𝑏, 𝑆〉 = 〈𝐴, 𝐵, 𝐶〉 ↔ 〈〈𝑅, 𝑏〉, 𝑆〉 = 〈〈𝐴, 𝐵〉, 𝐶〉) |
14 | 10, 13 | bitri 263 |
. . . . . . . . . 10
⊢
(〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ↔ 〈〈𝑅, 𝑏〉, 𝑆〉 = 〈〈𝐴, 𝐵〉, 𝐶〉) |
15 | 14 | a1i 11 |
. . . . . . . . 9
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → (〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ↔ 〈〈𝑅, 𝑏〉, 𝑆〉 = 〈〈𝐴, 𝐵〉, 𝐶〉)) |
16 | | opex 4859 |
. . . . . . . . . . . . . 14
⊢
〈𝑅, 𝑏〉 ∈ V |
17 | 16 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑉) → 〈𝑅, 𝑏〉 ∈ V) |
18 | | simpr 476 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑉) → 𝑆 ∈ 𝑉) |
19 | 17, 18 | jca 553 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑉) → (〈𝑅, 𝑏〉 ∈ V ∧ 𝑆 ∈ 𝑉)) |
20 | 19 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑉)) → (〈𝑅, 𝑏〉 ∈ V ∧ 𝑆 ∈ 𝑉)) |
21 | 20 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → (〈𝑅, 𝑏〉 ∈ V ∧ 𝑆 ∈ 𝑉)) |
22 | | opthg 4872 |
. . . . . . . . . 10
⊢
((〈𝑅, 𝑏〉 ∈ V ∧ 𝑆 ∈ 𝑉) → (〈〈𝑅, 𝑏〉, 𝑆〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 ↔ (〈𝑅, 𝑏〉 = 〈𝐴, 𝐵〉 ∧ 𝑆 = 𝐶))) |
23 | 21, 22 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → (〈〈𝑅, 𝑏〉, 𝑆〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 ↔ (〈𝑅, 𝑏〉 = 〈𝐴, 𝐵〉 ∧ 𝑆 = 𝐶))) |
24 | | simpl 472 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑉) → 𝑅 ∈ 𝑉) |
25 | 24 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑉)) → 𝑅 ∈ 𝑉) |
26 | | opthg 4872 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (〈𝑅, 𝑏〉 = 〈𝐴, 𝐵〉 ↔ (𝑅 = 𝐴 ∧ 𝑏 = 𝐵))) |
27 | 25, 26 | sylan 487 |
. . . . . . . . . 10
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → (〈𝑅, 𝑏〉 = 〈𝐴, 𝐵〉 ↔ (𝑅 = 𝐴 ∧ 𝑏 = 𝐵))) |
28 | 27 | anbi1d 737 |
. . . . . . . . 9
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → ((〈𝑅, 𝑏〉 = 〈𝐴, 𝐵〉 ∧ 𝑆 = 𝐶) ↔ ((𝑅 = 𝐴 ∧ 𝑏 = 𝐵) ∧ 𝑆 = 𝐶))) |
29 | 15, 23, 28 | 3bitrd 293 |
. . . . . . . 8
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → (〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ↔ ((𝑅 = 𝐴 ∧ 𝑏 = 𝐵) ∧ 𝑆 = 𝐶))) |
30 | | eqcom 2617 |
. . . . . . . . . . . . . 14
⊢ (𝑅 = 𝐴 ↔ 𝐴 = 𝑅) |
31 | 30 | biimpi 205 |
. . . . . . . . . . . . 13
⊢ (𝑅 = 𝐴 → 𝐴 = 𝑅) |
32 | 31 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑅 = 𝐴 ∧ 𝑏 = 𝐵) → 𝐴 = 𝑅) |
33 | | eqcom 2617 |
. . . . . . . . . . . . 13
⊢ (𝑆 = 𝐶 ↔ 𝐶 = 𝑆) |
34 | 33 | biimpi 205 |
. . . . . . . . . . . 12
⊢ (𝑆 = 𝐶 → 𝐶 = 𝑆) |
35 | 32, 34 | anim12i 588 |
. . . . . . . . . . 11
⊢ (((𝑅 = 𝐴 ∧ 𝑏 = 𝐵) ∧ 𝑆 = 𝐶) → (𝐴 = 𝑅 ∧ 𝐶 = 𝑆)) |
36 | 35 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑅 = 𝐴 ∧ 𝑏 = 𝐵) ∧ 𝑆 = 𝐶) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) → (𝐴 = 𝑅 ∧ 𝐶 = 𝑆)) |
37 | | simpr1 1060 |
. . . . . . . . . . 11
⊢ ((((𝑅 = 𝐴 ∧ 𝑏 = 𝐵) ∧ 𝑆 = 𝐶) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) → 𝑓(𝑉 Walks 𝐸)𝑝) |
38 | | simpr2 1061 |
. . . . . . . . . . 11
⊢ ((((𝑅 = 𝐴 ∧ 𝑏 = 𝐵) ∧ 𝑆 = 𝐶) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) → (#‘𝑓) = 2) |
39 | | eqtr2 2630 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 = 𝐴 ∧ 𝑅 = (𝑝‘0)) → 𝐴 = (𝑝‘0)) |
40 | 39 | ex 449 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 = 𝐴 → (𝑅 = (𝑝‘0) → 𝐴 = (𝑝‘0))) |
41 | 40 | ad2antrr 758 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 = 𝐴 ∧ 𝑏 = 𝐵) ∧ 𝑆 = 𝐶) → (𝑅 = (𝑝‘0) → 𝐴 = (𝑝‘0))) |
42 | | eqtr2 2630 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑏 = 𝐵 ∧ 𝑏 = (𝑝‘1)) → 𝐵 = (𝑝‘1)) |
43 | 42 | ex 449 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝐵 → (𝑏 = (𝑝‘1) → 𝐵 = (𝑝‘1))) |
44 | 43 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑏 = (𝑝‘1) → 𝐵 = (𝑝‘1))) |
45 | 44 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 = 𝐴 ∧ 𝑏 = 𝐵) ∧ 𝑆 = 𝐶) → (𝑏 = (𝑝‘1) → 𝐵 = (𝑝‘1))) |
46 | | eqtr2 2630 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆 = 𝐶 ∧ 𝑆 = (𝑝‘2)) → 𝐶 = (𝑝‘2)) |
47 | 46 | ex 449 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 = 𝐶 → (𝑆 = (𝑝‘2) → 𝐶 = (𝑝‘2))) |
48 | 47 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 = 𝐴 ∧ 𝑏 = 𝐵) ∧ 𝑆 = 𝐶) → (𝑆 = (𝑝‘2) → 𝐶 = (𝑝‘2))) |
49 | 41, 45, 48 | 3anim123d 1398 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 = 𝐴 ∧ 𝑏 = 𝐵) ∧ 𝑆 = 𝐶) → ((𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)) → (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) |
50 | 49 | com12 32 |
. . . . . . . . . . . . 13
⊢ ((𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)) → (((𝑅 = 𝐴 ∧ 𝑏 = 𝐵) ∧ 𝑆 = 𝐶) → (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) |
51 | 50 | 3ad2ant3 1077 |
. . . . . . . . . . . 12
⊢ ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))) → (((𝑅 = 𝐴 ∧ 𝑏 = 𝐵) ∧ 𝑆 = 𝐶) → (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) |
52 | 51 | impcom 445 |
. . . . . . . . . . 11
⊢ ((((𝑅 = 𝐴 ∧ 𝑏 = 𝐵) ∧ 𝑆 = 𝐶) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) → (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) |
53 | 37, 38, 52 | 3jca 1235 |
. . . . . . . . . 10
⊢ ((((𝑅 = 𝐴 ∧ 𝑏 = 𝐵) ∧ 𝑆 = 𝐶) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) → (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) |
54 | 36, 53 | jca 553 |
. . . . . . . . 9
⊢ ((((𝑅 = 𝐴 ∧ 𝑏 = 𝐵) ∧ 𝑆 = 𝐶) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) → ((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))) |
55 | 54 | ex 449 |
. . . . . . . 8
⊢ (((𝑅 = 𝐴 ∧ 𝑏 = 𝐵) ∧ 𝑆 = 𝐶) → ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))) → ((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))))) |
56 | 29, 55 | syl6bi 242 |
. . . . . . 7
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → (〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 → ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))) → ((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))) |
57 | 56 | impd 446 |
. . . . . 6
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → ((〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) → ((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))))) |
58 | 57 | rexlimdva 3013 |
. . . . 5
⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑉)) → (∃𝑏 ∈ 𝑉 (〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) → ((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))))) |
59 | | el2wlkonotlem 26389 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2) → (𝑝‘1) ∈ 𝑉) |
60 | 59 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2) ∧ 𝐵 = (𝑝‘1)) → (𝑝‘1) ∈ 𝑉) |
61 | | eleq1 2676 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 = (𝑝‘1) → (𝐵 ∈ 𝑉 ↔ (𝑝‘1) ∈ 𝑉)) |
62 | 61 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2) ∧ 𝐵 = (𝑝‘1)) → (𝐵 ∈ 𝑉 ↔ (𝑝‘1) ∈ 𝑉)) |
63 | 60, 62 | mpbird 246 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2) ∧ 𝐵 = (𝑝‘1)) → 𝐵 ∈ 𝑉) |
64 | 63 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ (((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2) ∧ 𝐵 = (𝑝‘1)) → ((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) → 𝐵 ∈ 𝑉)) |
65 | 64 | ex 449 |
. . . . . . . . . . . . 13
⊢ ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2) → (𝐵 = (𝑝‘1) → ((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) → 𝐵 ∈ 𝑉))) |
66 | 65 | ex 449 |
. . . . . . . . . . . 12
⊢ (𝑓(𝑉 Walks 𝐸)𝑝 → ((#‘𝑓) = 2 → (𝐵 = (𝑝‘1) → ((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) → 𝐵 ∈ 𝑉)))) |
67 | 66 | com13 86 |
. . . . . . . . . . 11
⊢ (𝐵 = (𝑝‘1) → ((#‘𝑓) = 2 → (𝑓(𝑉 Walks 𝐸)𝑝 → ((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) → 𝐵 ∈ 𝑉)))) |
68 | 67 | 3ad2ant2 1076 |
. . . . . . . . . 10
⊢ ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → ((#‘𝑓) = 2 → (𝑓(𝑉 Walks 𝐸)𝑝 → ((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) → 𝐵 ∈ 𝑉)))) |
69 | 68 | com13 86 |
. . . . . . . . 9
⊢ (𝑓(𝑉 Walks 𝐸)𝑝 → ((#‘𝑓) = 2 → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → ((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) → 𝐵 ∈ 𝑉)))) |
70 | 69 | 3imp 1249 |
. . . . . . . 8
⊢ ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) → 𝐵 ∈ 𝑉)) |
71 | 70 | impcom 445 |
. . . . . . 7
⊢ (((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → 𝐵 ∈ 𝑉) |
72 | | simpl 472 |
. . . . . . . . . . 11
⊢ ((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) → 𝐴 = 𝑅) |
73 | 72 | ad2antrr 758 |
. . . . . . . . . 10
⊢ ((((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ∧ 𝑏 = 𝐵) → 𝐴 = 𝑅) |
74 | | eqcom 2617 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝐵 ↔ 𝐵 = 𝑏) |
75 | 74 | biimpi 205 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝐵 → 𝐵 = 𝑏) |
76 | 75 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ∧ 𝑏 = 𝐵) → 𝐵 = 𝑏) |
77 | | simpr 476 |
. . . . . . . . . . 11
⊢ ((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) → 𝐶 = 𝑆) |
78 | 77 | ad2antrr 758 |
. . . . . . . . . 10
⊢ ((((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ∧ 𝑏 = 𝐵) → 𝐶 = 𝑆) |
79 | 73, 76, 78 | oteq123d 4355 |
. . . . . . . . 9
⊢ ((((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ∧ 𝑏 = 𝐵) → 〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉) |
80 | | simpr1 1060 |
. . . . . . . . . . 11
⊢ (((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → 𝑓(𝑉 Walks 𝐸)𝑝) |
81 | 80 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ∧ 𝑏 = 𝐵) → 𝑓(𝑉 Walks 𝐸)𝑝) |
82 | | simplr2 1097 |
. . . . . . . . . 10
⊢ ((((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ∧ 𝑏 = 𝐵) → (#‘𝑓) = 2) |
83 | | eqtr2 2630 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 = 𝑅 ∧ 𝐴 = (𝑝‘0)) → 𝑅 = (𝑝‘0)) |
84 | 83 | ex 449 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 = 𝑅 → (𝐴 = (𝑝‘0) → 𝑅 = (𝑝‘0))) |
85 | 84 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) → (𝐴 = (𝑝‘0) → 𝑅 = (𝑝‘0))) |
86 | 85 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 𝐵 ∧ (𝐴 = 𝑅 ∧ 𝐶 = 𝑆)) → (𝐴 = (𝑝‘0) → 𝑅 = (𝑝‘0))) |
87 | | eqtr2 2630 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐵 = 𝑏 ∧ 𝐵 = (𝑝‘1)) → 𝑏 = (𝑝‘1)) |
88 | 87 | ex 449 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 = 𝑏 → (𝐵 = (𝑝‘1) → 𝑏 = (𝑝‘1))) |
89 | 88 | eqcoms 2618 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝐵 → (𝐵 = (𝑝‘1) → 𝑏 = (𝑝‘1))) |
90 | 89 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 𝐵 ∧ (𝐴 = 𝑅 ∧ 𝐶 = 𝑆)) → (𝐵 = (𝑝‘1) → 𝑏 = (𝑝‘1))) |
91 | | eqtr2 2630 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐶 = 𝑆 ∧ 𝐶 = (𝑝‘2)) → 𝑆 = (𝑝‘2)) |
92 | 91 | ex 449 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐶 = 𝑆 → (𝐶 = (𝑝‘2) → 𝑆 = (𝑝‘2))) |
93 | 92 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) → (𝐶 = (𝑝‘2) → 𝑆 = (𝑝‘2))) |
94 | 93 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 𝐵 ∧ (𝐴 = 𝑅 ∧ 𝐶 = 𝑆)) → (𝐶 = (𝑝‘2) → 𝑆 = (𝑝‘2))) |
95 | 86, 90, 94 | 3anim123d 1398 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 𝐵 ∧ (𝐴 = 𝑅 ∧ 𝐶 = 𝑆)) → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) |
96 | 95 | ex 449 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝐵 → ((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))))) |
97 | 96 | com13 86 |
. . . . . . . . . . . . 13
⊢ ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → ((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) → (𝑏 = 𝐵 → (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))))) |
98 | 97 | 3ad2ant3 1077 |
. . . . . . . . . . . 12
⊢ ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) → (𝑏 = 𝐵 → (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))))) |
99 | 98 | impcom 445 |
. . . . . . . . . . 11
⊢ (((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑏 = 𝐵 → (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) |
100 | 99 | imp 444 |
. . . . . . . . . 10
⊢ ((((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ∧ 𝑏 = 𝐵) → (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))) |
101 | 81, 82, 100 | 3jca 1235 |
. . . . . . . . 9
⊢ ((((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ∧ 𝑏 = 𝐵) → (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) |
102 | 79, 101 | jca 553 |
. . . . . . . 8
⊢ ((((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ∧ 𝑏 = 𝐵) → (〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))))) |
103 | 102 | a1d 25 |
. . . . . . 7
⊢ ((((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ∧ 𝑏 = 𝐵) → (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑉)) → (〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))))) |
104 | 71, 103 | rspcimedv 3284 |
. . . . . 6
⊢ (((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑉)) → ∃𝑏 ∈ 𝑉 (〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))))) |
105 | 104 | com12 32 |
. . . . 5
⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑉)) → (((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → ∃𝑏 ∈ 𝑉 (〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))))) |
106 | 58, 105 | impbid 201 |
. . . 4
⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑉)) → (∃𝑏 ∈ 𝑉 (〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) ↔ ((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))))) |
107 | 106 | 2exbidv 1839 |
. . 3
⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑉)) → (∃𝑓∃𝑝∃𝑏 ∈ 𝑉 (〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) ↔ ∃𝑓∃𝑝((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))))) |
108 | | df-3an 1033 |
. . . 4
⊢ ((𝐴 = 𝑅 ∧ 𝐶 = 𝑆 ∧ ∃𝑓∃𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ↔ ((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ ∃𝑓∃𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))) |
109 | | 19.42vv 1907 |
. . . . 5
⊢
(∃𝑓∃𝑝((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ↔ ((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ ∃𝑓∃𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))) |
110 | 109 | bicomi 213 |
. . . 4
⊢ (((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ ∃𝑓∃𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ↔ ∃𝑓∃𝑝((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))) |
111 | 108, 110 | bitri 263 |
. . 3
⊢ ((𝐴 = 𝑅 ∧ 𝐶 = 𝑆 ∧ ∃𝑓∃𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ↔ ∃𝑓∃𝑝((𝐴 = 𝑅 ∧ 𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))) |
112 | 107, 111 | syl6bbr 277 |
. 2
⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑉)) → (∃𝑓∃𝑝∃𝑏 ∈ 𝑉 (〈𝐴, 𝐵, 𝐶〉 = 〈𝑅, 𝑏, 𝑆〉 ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) ↔ (𝐴 = 𝑅 ∧ 𝐶 = 𝑆 ∧ ∃𝑓∃𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))))) |
113 | 1, 9, 112 | 3bitrd 293 |
1
⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑉)) → (〈𝐴, 𝐵, 𝐶〉 ∈ (𝑅(𝑉 2WalksOnOt 𝐸)𝑆) ↔ (𝐴 = 𝑅 ∧ 𝐶 = 𝑆 ∧ ∃𝑓∃𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))))) |