MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el2wlkonotot0 Structured version   Visualization version   GIF version

Theorem el2wlkonotot0 26399
Description: A walk of length 2 between two vertices (in a graph) as ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018.)
Assertion
Ref Expression
el2wlkonotot0 (((𝑉𝑋𝐸𝑌) ∧ (𝑅𝑉𝑆𝑉)) → (⟨𝐴, 𝐵, 𝐶⟩ ∈ (𝑅(𝑉 2WalksOnOt 𝐸)𝑆) ↔ (𝐴 = 𝑅𝐶 = 𝑆 ∧ ∃𝑓𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
Distinct variable groups:   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝   𝐶,𝑓,𝑝   𝑓,𝐸,𝑝   𝑓,𝑉,𝑝   𝑅,𝑓,𝑝   𝑆,𝑓,𝑝   𝑓,𝑋,𝑝   𝑓,𝑌,𝑝

Proof of Theorem el2wlkonotot0
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 el2wlkonot 26396 . 2 (((𝑉𝑋𝐸𝑌) ∧ (𝑅𝑉𝑆𝑉)) → (⟨𝐴, 𝐵, 𝐶⟩ ∈ (𝑅(𝑉 2WalksOnOt 𝐸)𝑆) ↔ ∃𝑏𝑉 (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ ∃𝑓𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))))))
2 19.42vv 1907 . . . . . 6 (∃𝑓𝑝(⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) ↔ (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ ∃𝑓𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))))
32bicomi 213 . . . . 5 ((⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ ∃𝑓𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) ↔ ∃𝑓𝑝(⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))))
43rexbii 3023 . . . 4 (∃𝑏𝑉 (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ ∃𝑓𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) ↔ ∃𝑏𝑉𝑓𝑝(⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))))
5 rexcom4 3198 . . . 4 (∃𝑏𝑉𝑓𝑝(⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) ↔ ∃𝑓𝑏𝑉𝑝(⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))))
6 rexcom4 3198 . . . . 5 (∃𝑏𝑉𝑝(⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) ↔ ∃𝑝𝑏𝑉 (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))))
76exbii 1764 . . . 4 (∃𝑓𝑏𝑉𝑝(⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) ↔ ∃𝑓𝑝𝑏𝑉 (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))))
84, 5, 73bitri 285 . . 3 (∃𝑏𝑉 (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ ∃𝑓𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) ↔ ∃𝑓𝑝𝑏𝑉 (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))))
98a1i 11 . 2 (((𝑉𝑋𝐸𝑌) ∧ (𝑅𝑉𝑆𝑉)) → (∃𝑏𝑉 (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ ∃𝑓𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) ↔ ∃𝑓𝑝𝑏𝑉 (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))))))
10 eqcom 2617 . . . . . . . . . . 11 (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ↔ ⟨𝑅, 𝑏, 𝑆⟩ = ⟨𝐴, 𝐵, 𝐶⟩)
11 df-ot 4134 . . . . . . . . . . . 12 𝑅, 𝑏, 𝑆⟩ = ⟨⟨𝑅, 𝑏⟩, 𝑆
12 df-ot 4134 . . . . . . . . . . . 12 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
1311, 12eqeq12i 2624 . . . . . . . . . . 11 (⟨𝑅, 𝑏, 𝑆⟩ = ⟨𝐴, 𝐵, 𝐶⟩ ↔ ⟨⟨𝑅, 𝑏⟩, 𝑆⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩)
1410, 13bitri 263 . . . . . . . . . 10 (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ↔ ⟨⟨𝑅, 𝑏⟩, 𝑆⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩)
1514a1i 11 . . . . . . . . 9 ((((𝑉𝑋𝐸𝑌) ∧ (𝑅𝑉𝑆𝑉)) ∧ 𝑏𝑉) → (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ↔ ⟨⟨𝑅, 𝑏⟩, 𝑆⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩))
16 opex 4859 . . . . . . . . . . . . . 14 𝑅, 𝑏⟩ ∈ V
1716a1i 11 . . . . . . . . . . . . 13 ((𝑅𝑉𝑆𝑉) → ⟨𝑅, 𝑏⟩ ∈ V)
18 simpr 476 . . . . . . . . . . . . 13 ((𝑅𝑉𝑆𝑉) → 𝑆𝑉)
1917, 18jca 553 . . . . . . . . . . . 12 ((𝑅𝑉𝑆𝑉) → (⟨𝑅, 𝑏⟩ ∈ V ∧ 𝑆𝑉))
2019adantl 481 . . . . . . . . . . 11 (((𝑉𝑋𝐸𝑌) ∧ (𝑅𝑉𝑆𝑉)) → (⟨𝑅, 𝑏⟩ ∈ V ∧ 𝑆𝑉))
2120adantr 480 . . . . . . . . . 10 ((((𝑉𝑋𝐸𝑌) ∧ (𝑅𝑉𝑆𝑉)) ∧ 𝑏𝑉) → (⟨𝑅, 𝑏⟩ ∈ V ∧ 𝑆𝑉))
22 opthg 4872 . . . . . . . . . 10 ((⟨𝑅, 𝑏⟩ ∈ V ∧ 𝑆𝑉) → (⟨⟨𝑅, 𝑏⟩, 𝑆⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ↔ (⟨𝑅, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑆 = 𝐶)))
2321, 22syl 17 . . . . . . . . 9 ((((𝑉𝑋𝐸𝑌) ∧ (𝑅𝑉𝑆𝑉)) ∧ 𝑏𝑉) → (⟨⟨𝑅, 𝑏⟩, 𝑆⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ↔ (⟨𝑅, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑆 = 𝐶)))
24 simpl 472 . . . . . . . . . . . 12 ((𝑅𝑉𝑆𝑉) → 𝑅𝑉)
2524adantl 481 . . . . . . . . . . 11 (((𝑉𝑋𝐸𝑌) ∧ (𝑅𝑉𝑆𝑉)) → 𝑅𝑉)
26 opthg 4872 . . . . . . . . . . 11 ((𝑅𝑉𝑏𝑉) → (⟨𝑅, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑅 = 𝐴𝑏 = 𝐵)))
2725, 26sylan 487 . . . . . . . . . 10 ((((𝑉𝑋𝐸𝑌) ∧ (𝑅𝑉𝑆𝑉)) ∧ 𝑏𝑉) → (⟨𝑅, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑅 = 𝐴𝑏 = 𝐵)))
2827anbi1d 737 . . . . . . . . 9 ((((𝑉𝑋𝐸𝑌) ∧ (𝑅𝑉𝑆𝑉)) ∧ 𝑏𝑉) → ((⟨𝑅, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑆 = 𝐶) ↔ ((𝑅 = 𝐴𝑏 = 𝐵) ∧ 𝑆 = 𝐶)))
2915, 23, 283bitrd 293 . . . . . . . 8 ((((𝑉𝑋𝐸𝑌) ∧ (𝑅𝑉𝑆𝑉)) ∧ 𝑏𝑉) → (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ↔ ((𝑅 = 𝐴𝑏 = 𝐵) ∧ 𝑆 = 𝐶)))
30 eqcom 2617 . . . . . . . . . . . . . 14 (𝑅 = 𝐴𝐴 = 𝑅)
3130biimpi 205 . . . . . . . . . . . . 13 (𝑅 = 𝐴𝐴 = 𝑅)
3231adantr 480 . . . . . . . . . . . 12 ((𝑅 = 𝐴𝑏 = 𝐵) → 𝐴 = 𝑅)
33 eqcom 2617 . . . . . . . . . . . . 13 (𝑆 = 𝐶𝐶 = 𝑆)
3433biimpi 205 . . . . . . . . . . . 12 (𝑆 = 𝐶𝐶 = 𝑆)
3532, 34anim12i 588 . . . . . . . . . . 11 (((𝑅 = 𝐴𝑏 = 𝐵) ∧ 𝑆 = 𝐶) → (𝐴 = 𝑅𝐶 = 𝑆))
3635adantr 480 . . . . . . . . . 10 ((((𝑅 = 𝐴𝑏 = 𝐵) ∧ 𝑆 = 𝐶) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) → (𝐴 = 𝑅𝐶 = 𝑆))
37 simpr1 1060 . . . . . . . . . . 11 ((((𝑅 = 𝐴𝑏 = 𝐵) ∧ 𝑆 = 𝐶) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) → 𝑓(𝑉 Walks 𝐸)𝑝)
38 simpr2 1061 . . . . . . . . . . 11 ((((𝑅 = 𝐴𝑏 = 𝐵) ∧ 𝑆 = 𝐶) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) → (#‘𝑓) = 2)
39 eqtr2 2630 . . . . . . . . . . . . . . . . 17 ((𝑅 = 𝐴𝑅 = (𝑝‘0)) → 𝐴 = (𝑝‘0))
4039ex 449 . . . . . . . . . . . . . . . 16 (𝑅 = 𝐴 → (𝑅 = (𝑝‘0) → 𝐴 = (𝑝‘0)))
4140ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝑅 = 𝐴𝑏 = 𝐵) ∧ 𝑆 = 𝐶) → (𝑅 = (𝑝‘0) → 𝐴 = (𝑝‘0)))
42 eqtr2 2630 . . . . . . . . . . . . . . . . . 18 ((𝑏 = 𝐵𝑏 = (𝑝‘1)) → 𝐵 = (𝑝‘1))
4342ex 449 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝐵 → (𝑏 = (𝑝‘1) → 𝐵 = (𝑝‘1)))
4443adantl 481 . . . . . . . . . . . . . . . 16 ((𝑅 = 𝐴𝑏 = 𝐵) → (𝑏 = (𝑝‘1) → 𝐵 = (𝑝‘1)))
4544adantr 480 . . . . . . . . . . . . . . 15 (((𝑅 = 𝐴𝑏 = 𝐵) ∧ 𝑆 = 𝐶) → (𝑏 = (𝑝‘1) → 𝐵 = (𝑝‘1)))
46 eqtr2 2630 . . . . . . . . . . . . . . . . 17 ((𝑆 = 𝐶𝑆 = (𝑝‘2)) → 𝐶 = (𝑝‘2))
4746ex 449 . . . . . . . . . . . . . . . 16 (𝑆 = 𝐶 → (𝑆 = (𝑝‘2) → 𝐶 = (𝑝‘2)))
4847adantl 481 . . . . . . . . . . . . . . 15 (((𝑅 = 𝐴𝑏 = 𝐵) ∧ 𝑆 = 𝐶) → (𝑆 = (𝑝‘2) → 𝐶 = (𝑝‘2)))
4941, 45, 483anim123d 1398 . . . . . . . . . . . . . 14 (((𝑅 = 𝐴𝑏 = 𝐵) ∧ 𝑆 = 𝐶) → ((𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)) → (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
5049com12 32 . . . . . . . . . . . . 13 ((𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)) → (((𝑅 = 𝐴𝑏 = 𝐵) ∧ 𝑆 = 𝐶) → (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
51503ad2ant3 1077 . . . . . . . . . . . 12 ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))) → (((𝑅 = 𝐴𝑏 = 𝐵) ∧ 𝑆 = 𝐶) → (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
5251impcom 445 . . . . . . . . . . 11 ((((𝑅 = 𝐴𝑏 = 𝐵) ∧ 𝑆 = 𝐶) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) → (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))
5337, 38, 523jca 1235 . . . . . . . . . 10 ((((𝑅 = 𝐴𝑏 = 𝐵) ∧ 𝑆 = 𝐶) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) → (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
5436, 53jca 553 . . . . . . . . 9 ((((𝑅 = 𝐴𝑏 = 𝐵) ∧ 𝑆 = 𝐶) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) → ((𝐴 = 𝑅𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))))
5554ex 449 . . . . . . . 8 (((𝑅 = 𝐴𝑏 = 𝐵) ∧ 𝑆 = 𝐶) → ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))) → ((𝐴 = 𝑅𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
5629, 55syl6bi 242 . . . . . . 7 ((((𝑉𝑋𝐸𝑌) ∧ (𝑅𝑉𝑆𝑉)) ∧ 𝑏𝑉) → (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ → ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))) → ((𝐴 = 𝑅𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))))))
5756impd 446 . . . . . 6 ((((𝑉𝑋𝐸𝑌) ∧ (𝑅𝑉𝑆𝑉)) ∧ 𝑏𝑉) → ((⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) → ((𝐴 = 𝑅𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
5857rexlimdva 3013 . . . . 5 (((𝑉𝑋𝐸𝑌) ∧ (𝑅𝑉𝑆𝑉)) → (∃𝑏𝑉 (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) → ((𝐴 = 𝑅𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
59 el2wlkonotlem 26389 . . . . . . . . . . . . . . . . 17 ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2) → (𝑝‘1) ∈ 𝑉)
6059adantr 480 . . . . . . . . . . . . . . . 16 (((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2) ∧ 𝐵 = (𝑝‘1)) → (𝑝‘1) ∈ 𝑉)
61 eleq1 2676 . . . . . . . . . . . . . . . . 17 (𝐵 = (𝑝‘1) → (𝐵𝑉 ↔ (𝑝‘1) ∈ 𝑉))
6261adantl 481 . . . . . . . . . . . . . . . 16 (((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2) ∧ 𝐵 = (𝑝‘1)) → (𝐵𝑉 ↔ (𝑝‘1) ∈ 𝑉))
6360, 62mpbird 246 . . . . . . . . . . . . . . 15 (((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2) ∧ 𝐵 = (𝑝‘1)) → 𝐵𝑉)
6463a1d 25 . . . . . . . . . . . . . 14 (((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2) ∧ 𝐵 = (𝑝‘1)) → ((𝐴 = 𝑅𝐶 = 𝑆) → 𝐵𝑉))
6564ex 449 . . . . . . . . . . . . 13 ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2) → (𝐵 = (𝑝‘1) → ((𝐴 = 𝑅𝐶 = 𝑆) → 𝐵𝑉)))
6665ex 449 . . . . . . . . . . . 12 (𝑓(𝑉 Walks 𝐸)𝑝 → ((#‘𝑓) = 2 → (𝐵 = (𝑝‘1) → ((𝐴 = 𝑅𝐶 = 𝑆) → 𝐵𝑉))))
6766com13 86 . . . . . . . . . . 11 (𝐵 = (𝑝‘1) → ((#‘𝑓) = 2 → (𝑓(𝑉 Walks 𝐸)𝑝 → ((𝐴 = 𝑅𝐶 = 𝑆) → 𝐵𝑉))))
68673ad2ant2 1076 . . . . . . . . . 10 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → ((#‘𝑓) = 2 → (𝑓(𝑉 Walks 𝐸)𝑝 → ((𝐴 = 𝑅𝐶 = 𝑆) → 𝐵𝑉))))
6968com13 86 . . . . . . . . 9 (𝑓(𝑉 Walks 𝐸)𝑝 → ((#‘𝑓) = 2 → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → ((𝐴 = 𝑅𝐶 = 𝑆) → 𝐵𝑉))))
70693imp 1249 . . . . . . . 8 ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ((𝐴 = 𝑅𝐶 = 𝑆) → 𝐵𝑉))
7170impcom 445 . . . . . . 7 (((𝐴 = 𝑅𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → 𝐵𝑉)
72 simpl 472 . . . . . . . . . . 11 ((𝐴 = 𝑅𝐶 = 𝑆) → 𝐴 = 𝑅)
7372ad2antrr 758 . . . . . . . . . 10 ((((𝐴 = 𝑅𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ∧ 𝑏 = 𝐵) → 𝐴 = 𝑅)
74 eqcom 2617 . . . . . . . . . . . 12 (𝑏 = 𝐵𝐵 = 𝑏)
7574biimpi 205 . . . . . . . . . . 11 (𝑏 = 𝐵𝐵 = 𝑏)
7675adantl 481 . . . . . . . . . 10 ((((𝐴 = 𝑅𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ∧ 𝑏 = 𝐵) → 𝐵 = 𝑏)
77 simpr 476 . . . . . . . . . . 11 ((𝐴 = 𝑅𝐶 = 𝑆) → 𝐶 = 𝑆)
7877ad2antrr 758 . . . . . . . . . 10 ((((𝐴 = 𝑅𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ∧ 𝑏 = 𝐵) → 𝐶 = 𝑆)
7973, 76, 78oteq123d 4355 . . . . . . . . 9 ((((𝐴 = 𝑅𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ∧ 𝑏 = 𝐵) → ⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩)
80 simpr1 1060 . . . . . . . . . . 11 (((𝐴 = 𝑅𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → 𝑓(𝑉 Walks 𝐸)𝑝)
8180adantr 480 . . . . . . . . . 10 ((((𝐴 = 𝑅𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ∧ 𝑏 = 𝐵) → 𝑓(𝑉 Walks 𝐸)𝑝)
82 simplr2 1097 . . . . . . . . . 10 ((((𝐴 = 𝑅𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ∧ 𝑏 = 𝐵) → (#‘𝑓) = 2)
83 eqtr2 2630 . . . . . . . . . . . . . . . . . . 19 ((𝐴 = 𝑅𝐴 = (𝑝‘0)) → 𝑅 = (𝑝‘0))
8483ex 449 . . . . . . . . . . . . . . . . . 18 (𝐴 = 𝑅 → (𝐴 = (𝑝‘0) → 𝑅 = (𝑝‘0)))
8584adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐴 = 𝑅𝐶 = 𝑆) → (𝐴 = (𝑝‘0) → 𝑅 = (𝑝‘0)))
8685adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 𝐵 ∧ (𝐴 = 𝑅𝐶 = 𝑆)) → (𝐴 = (𝑝‘0) → 𝑅 = (𝑝‘0)))
87 eqtr2 2630 . . . . . . . . . . . . . . . . . . 19 ((𝐵 = 𝑏𝐵 = (𝑝‘1)) → 𝑏 = (𝑝‘1))
8887ex 449 . . . . . . . . . . . . . . . . . 18 (𝐵 = 𝑏 → (𝐵 = (𝑝‘1) → 𝑏 = (𝑝‘1)))
8988eqcoms 2618 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝐵 → (𝐵 = (𝑝‘1) → 𝑏 = (𝑝‘1)))
9089adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 𝐵 ∧ (𝐴 = 𝑅𝐶 = 𝑆)) → (𝐵 = (𝑝‘1) → 𝑏 = (𝑝‘1)))
91 eqtr2 2630 . . . . . . . . . . . . . . . . . . 19 ((𝐶 = 𝑆𝐶 = (𝑝‘2)) → 𝑆 = (𝑝‘2))
9291ex 449 . . . . . . . . . . . . . . . . . 18 (𝐶 = 𝑆 → (𝐶 = (𝑝‘2) → 𝑆 = (𝑝‘2)))
9392adantl 481 . . . . . . . . . . . . . . . . 17 ((𝐴 = 𝑅𝐶 = 𝑆) → (𝐶 = (𝑝‘2) → 𝑆 = (𝑝‘2)))
9493adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 𝐵 ∧ (𝐴 = 𝑅𝐶 = 𝑆)) → (𝐶 = (𝑝‘2) → 𝑆 = (𝑝‘2)))
9586, 90, 943anim123d 1398 . . . . . . . . . . . . . . 15 ((𝑏 = 𝐵 ∧ (𝐴 = 𝑅𝐶 = 𝑆)) → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))))
9695ex 449 . . . . . . . . . . . . . 14 (𝑏 = 𝐵 → ((𝐴 = 𝑅𝐶 = 𝑆) → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))))
9796com13 86 . . . . . . . . . . . . 13 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → ((𝐴 = 𝑅𝐶 = 𝑆) → (𝑏 = 𝐵 → (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))))
98973ad2ant3 1077 . . . . . . . . . . . 12 ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ((𝐴 = 𝑅𝐶 = 𝑆) → (𝑏 = 𝐵 → (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))))
9998impcom 445 . . . . . . . . . . 11 (((𝐴 = 𝑅𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑏 = 𝐵 → (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))))
10099imp 444 . . . . . . . . . 10 ((((𝐴 = 𝑅𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ∧ 𝑏 = 𝐵) → (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))
10181, 82, 1003jca 1235 . . . . . . . . 9 ((((𝐴 = 𝑅𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ∧ 𝑏 = 𝐵) → (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))))
10279, 101jca 553 . . . . . . . 8 ((((𝐴 = 𝑅𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ∧ 𝑏 = 𝐵) → (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))))
103102a1d 25 . . . . . . 7 ((((𝐴 = 𝑅𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ∧ 𝑏 = 𝐵) → (((𝑉𝑋𝐸𝑌) ∧ (𝑅𝑉𝑆𝑉)) → (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))))))
10471, 103rspcimedv 3284 . . . . . 6 (((𝐴 = 𝑅𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (((𝑉𝑋𝐸𝑌) ∧ (𝑅𝑉𝑆𝑉)) → ∃𝑏𝑉 (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))))))
105104com12 32 . . . . 5 (((𝑉𝑋𝐸𝑌) ∧ (𝑅𝑉𝑆𝑉)) → (((𝐴 = 𝑅𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → ∃𝑏𝑉 (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2))))))
10658, 105impbid 201 . . . 4 (((𝑉𝑋𝐸𝑌) ∧ (𝑅𝑉𝑆𝑉)) → (∃𝑏𝑉 (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) ↔ ((𝐴 = 𝑅𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
1071062exbidv 1839 . . 3 (((𝑉𝑋𝐸𝑌) ∧ (𝑅𝑉𝑆𝑉)) → (∃𝑓𝑝𝑏𝑉 (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) ↔ ∃𝑓𝑝((𝐴 = 𝑅𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
108 df-3an 1033 . . . 4 ((𝐴 = 𝑅𝐶 = 𝑆 ∧ ∃𝑓𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ↔ ((𝐴 = 𝑅𝐶 = 𝑆) ∧ ∃𝑓𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))))
109 19.42vv 1907 . . . . 5 (∃𝑓𝑝((𝐴 = 𝑅𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ↔ ((𝐴 = 𝑅𝐶 = 𝑆) ∧ ∃𝑓𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))))
110109bicomi 213 . . . 4 (((𝐴 = 𝑅𝐶 = 𝑆) ∧ ∃𝑓𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ↔ ∃𝑓𝑝((𝐴 = 𝑅𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))))
111108, 110bitri 263 . . 3 ((𝐴 = 𝑅𝐶 = 𝑆 ∧ ∃𝑓𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ↔ ∃𝑓𝑝((𝐴 = 𝑅𝐶 = 𝑆) ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))))
112107, 111syl6bbr 277 . 2 (((𝑉𝑋𝐸𝑌) ∧ (𝑅𝑉𝑆𝑉)) → (∃𝑓𝑝𝑏𝑉 (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑅, 𝑏, 𝑆⟩ ∧ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑅 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑆 = (𝑝‘2)))) ↔ (𝐴 = 𝑅𝐶 = 𝑆 ∧ ∃𝑓𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
1131, 9, 1123bitrd 293 1 (((𝑉𝑋𝐸𝑌) ∧ (𝑅𝑉𝑆𝑉)) → (⟨𝐴, 𝐵, 𝐶⟩ ∈ (𝑅(𝑉 2WalksOnOt 𝐸)𝑆) ↔ (𝐴 = 𝑅𝐶 = 𝑆 ∧ ∃𝑓𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wrex 2897  Vcvv 3173  cop 4131  cotp 4133   class class class wbr 4583  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816  2c2 10947  #chash 12979   Walks cwalk 26026   2WalksOnOt c2wlkonot 26382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-wlk 26036  df-wlkon 26042  df-2wlkonot 26385
This theorem is referenced by:  el2wlkonotot  26400  el2wlkonotot1  26401  el2wlksotot  26409
  Copyright terms: Public domain W3C validator