Step | Hyp | Ref
| Expression |
1 | | el2spthonot 26397 |
. 2
⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑇 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑇 = 〈𝐴, 𝑏, 𝐶〉 ∧ ∃𝑓∃𝑝(𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))))) |
2 | | fveq2 6103 |
. . . . . . . . . . . 12
⊢ (𝑡 = 〈𝐴, 𝑏, 𝐶〉 → (1st ‘𝑡) = (1st
‘〈𝐴, 𝑏, 𝐶〉)) |
3 | 2 | fveq2d 6107 |
. . . . . . . . . . 11
⊢ (𝑡 = 〈𝐴, 𝑏, 𝐶〉 → (1st
‘(1st ‘𝑡)) = (1st ‘(1st
‘〈𝐴, 𝑏, 𝐶〉))) |
4 | 3 | eqeq1d 2612 |
. . . . . . . . . 10
⊢ (𝑡 = 〈𝐴, 𝑏, 𝐶〉 → ((1st
‘(1st ‘𝑡)) = 𝐴 ↔ (1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴)) |
5 | 2 | fveq2d 6107 |
. . . . . . . . . . 11
⊢ (𝑡 = 〈𝐴, 𝑏, 𝐶〉 → (2nd
‘(1st ‘𝑡)) = (2nd ‘(1st
‘〈𝐴, 𝑏, 𝐶〉))) |
6 | 5 | eqeq1d 2612 |
. . . . . . . . . 10
⊢ (𝑡 = 〈𝐴, 𝑏, 𝐶〉 → ((2nd
‘(1st ‘𝑡)) = (𝑝‘1) ↔ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1))) |
7 | | fveq2 6103 |
. . . . . . . . . . 11
⊢ (𝑡 = 〈𝐴, 𝑏, 𝐶〉 → (2nd ‘𝑡) = (2nd
‘〈𝐴, 𝑏, 𝐶〉)) |
8 | 7 | eqeq1d 2612 |
. . . . . . . . . 10
⊢ (𝑡 = 〈𝐴, 𝑏, 𝐶〉 → ((2nd ‘𝑡) = 𝐶 ↔ (2nd ‘〈𝐴, 𝑏, 𝐶〉) = 𝐶)) |
9 | 4, 6, 8 | 3anbi123d 1391 |
. . . . . . . . 9
⊢ (𝑡 = 〈𝐴, 𝑏, 𝐶〉 → (((1st
‘(1st ‘𝑡)) = 𝐴 ∧ (2nd
‘(1st ‘𝑡)) = (𝑝‘1) ∧ (2nd ‘𝑡) = 𝐶) ↔ ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶))) |
10 | 9 | 3anbi3d 1397 |
. . . . . . . 8
⊢ (𝑡 = 〈𝐴, 𝑏, 𝐶〉 → ((𝑓(𝐴(𝑉 SPathOn 𝐸)𝐶)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘𝑡)) = 𝐴 ∧ (2nd
‘(1st ‘𝑡)) = (𝑝‘1) ∧ (2nd ‘𝑡) = 𝐶)) ↔ (𝑓(𝐴(𝑉 SPathOn 𝐸)𝐶)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶)))) |
11 | 10 | 2exbidv 1839 |
. . . . . . 7
⊢ (𝑡 = 〈𝐴, 𝑏, 𝐶〉 → (∃𝑓∃𝑝(𝑓(𝐴(𝑉 SPathOn 𝐸)𝐶)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘𝑡)) = 𝐴 ∧ (2nd
‘(1st ‘𝑡)) = (𝑝‘1) ∧ (2nd ‘𝑡) = 𝐶)) ↔ ∃𝑓∃𝑝(𝑓(𝐴(𝑉 SPathOn 𝐸)𝐶)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶)))) |
12 | 11 | elrab 3331 |
. . . . . 6
⊢
(〈𝐴, 𝑏, 𝐶〉 ∈ {𝑡 ∈ ((𝑉 × 𝑉) × 𝑉) ∣ ∃𝑓∃𝑝(𝑓(𝐴(𝑉 SPathOn 𝐸)𝐶)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘𝑡)) = 𝐴 ∧ (2nd
‘(1st ‘𝑡)) = (𝑝‘1) ∧ (2nd ‘𝑡) = 𝐶))} ↔ (〈𝐴, 𝑏, 𝐶〉 ∈ ((𝑉 × 𝑉) × 𝑉) ∧ ∃𝑓∃𝑝(𝑓(𝐴(𝑉 SPathOn 𝐸)𝐶)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶)))) |
13 | 12 | a1i 11 |
. . . . 5
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → (〈𝐴, 𝑏, 𝐶〉 ∈ {𝑡 ∈ ((𝑉 × 𝑉) × 𝑉) ∣ ∃𝑓∃𝑝(𝑓(𝐴(𝑉 SPathOn 𝐸)𝐶)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘𝑡)) = 𝐴 ∧ (2nd
‘(1st ‘𝑡)) = (𝑝‘1) ∧ (2nd ‘𝑡) = 𝐶))} ↔ (〈𝐴, 𝑏, 𝐶〉 ∈ ((𝑉 × 𝑉) × 𝑉) ∧ ∃𝑓∃𝑝(𝑓(𝐴(𝑉 SPathOn 𝐸)𝐶)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶))))) |
14 | | 2spthonot 26393 |
. . . . . . 7
⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴(𝑉 2SPathOnOt 𝐸)𝐶) = {𝑡 ∈ ((𝑉 × 𝑉) × 𝑉) ∣ ∃𝑓∃𝑝(𝑓(𝐴(𝑉 SPathOn 𝐸)𝐶)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘𝑡)) = 𝐴 ∧ (2nd
‘(1st ‘𝑡)) = (𝑝‘1) ∧ (2nd ‘𝑡) = 𝐶))}) |
15 | 14 | adantr 480 |
. . . . . 6
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → (𝐴(𝑉 2SPathOnOt 𝐸)𝐶) = {𝑡 ∈ ((𝑉 × 𝑉) × 𝑉) ∣ ∃𝑓∃𝑝(𝑓(𝐴(𝑉 SPathOn 𝐸)𝐶)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘𝑡)) = 𝐴 ∧ (2nd
‘(1st ‘𝑡)) = (𝑝‘1) ∧ (2nd ‘𝑡) = 𝐶))}) |
16 | 15 | eleq2d 2673 |
. . . . 5
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → (〈𝐴, 𝑏, 𝐶〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶) ↔ 〈𝐴, 𝑏, 𝐶〉 ∈ {𝑡 ∈ ((𝑉 × 𝑉) × 𝑉) ∣ ∃𝑓∃𝑝(𝑓(𝐴(𝑉 SPathOn 𝐸)𝐶)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘𝑡)) = 𝐴 ∧ (2nd
‘(1st ‘𝑡)) = (𝑝‘1) ∧ (2nd ‘𝑡) = 𝐶))})) |
17 | | simpr1 1060 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) ∧ (𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → 𝑓(𝑉 SPaths 𝐸)𝑝) |
18 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑝‘0) = 𝐴 → (𝑝‘0) = 𝐴) |
19 | 18 | eqcoms 2618 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 = (𝑝‘0) → (𝑝‘0) = 𝐴) |
20 | 19 | 3ad2ant1 1075 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑝‘0) = 𝐴) |
21 | 20 | 3ad2ant3 1077 |
. . . . . . . . . . . . 13
⊢ ((𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑝‘0) = 𝐴) |
22 | 21 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) ∧ (𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑝‘0) = 𝐴) |
23 | | fveq2 6103 |
. . . . . . . . . . . . . . 15
⊢
((#‘𝑓) = 2
→ (𝑝‘(#‘𝑓)) = (𝑝‘2)) |
24 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑝‘2) = 𝐶 → (𝑝‘2) = 𝐶) |
25 | 24 | eqcoms 2618 |
. . . . . . . . . . . . . . . 16
⊢ (𝐶 = (𝑝‘2) → (𝑝‘2) = 𝐶) |
26 | 25 | 3ad2ant3 1077 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑝‘2) = 𝐶) |
27 | 23, 26 | sylan9eq 2664 |
. . . . . . . . . . . . . 14
⊢
(((#‘𝑓) = 2
∧ (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑝‘(#‘𝑓)) = 𝐶) |
28 | 27 | 3adant1 1072 |
. . . . . . . . . . . . 13
⊢ ((𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑝‘(#‘𝑓)) = 𝐶) |
29 | 28 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) ∧ (𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑝‘(#‘𝑓)) = 𝐶) |
30 | 17, 22, 29 | 3jca 1235 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) ∧ (𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐶)) |
31 | | simpr2 1061 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) ∧ (𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (#‘𝑓) = 2) |
32 | | eqidd 2611 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) → 〈𝐴, 𝑏, 𝐶〉 = 〈𝐴, 𝑏, 𝐶〉) |
33 | | simpl 472 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → 𝐴 ∈ 𝑉) |
34 | 33 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) → 𝐴 ∈ 𝑉) |
35 | | simpr 476 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) → 𝑏 ∈ 𝑉) |
36 | | simpr 476 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ 𝑉) |
37 | 36 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) → 𝐶 ∈ 𝑉) |
38 | | oteqimp 7078 |
. . . . . . . . . . . . . . 15
⊢
(〈𝐴, 𝑏, 𝐶〉 = 〈𝐴, 𝑏, 𝐶〉 → ((𝐴 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝑏 ∧ (2nd ‘〈𝐴, 𝑏, 𝐶〉) = 𝐶))) |
39 | 38 | imp 444 |
. . . . . . . . . . . . . 14
⊢
((〈𝐴, 𝑏, 𝐶〉 = 〈𝐴, 𝑏, 𝐶〉 ∧ (𝐴 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝑏 ∧ (2nd ‘〈𝐴, 𝑏, 𝐶〉) = 𝐶)) |
40 | 32, 34, 35, 37, 39 | syl13anc 1320 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) → ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝑏 ∧ (2nd ‘〈𝐴, 𝑏, 𝐶〉) = 𝐶)) |
41 | 40 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) ∧ (𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝑏 ∧ (2nd ‘〈𝐴, 𝑏, 𝐶〉) = 𝐶)) |
42 | | eqeq2 2621 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = (𝑝‘1) → ((2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝑏 ↔ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1))) |
43 | 42 | 3ad2ant2 1076 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → ((2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝑏 ↔ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1))) |
44 | 43 | 3ad2ant3 1077 |
. . . . . . . . . . . . . 14
⊢ ((𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ((2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝑏 ↔ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1))) |
45 | 44 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) ∧ (𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → ((2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝑏 ↔ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1))) |
46 | 45 | 3anbi2d 1396 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) ∧ (𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝑏 ∧ (2nd ‘〈𝐴, 𝑏, 𝐶〉) = 𝐶) ↔ ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶))) |
47 | 41, 46 | mpbid 221 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) ∧ (𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶)) |
48 | 30, 31, 47 | 3jca 1235 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) ∧ (𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → ((𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐶) ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶))) |
49 | | simpr11 1138 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) ∧ ((𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐶) ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶))) → 𝑓(𝑉 SPaths 𝐸)𝑝) |
50 | | simpr2 1061 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) ∧ ((𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐶) ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶))) → (#‘𝑓) = 2) |
51 | 23 | eqeq1d 2612 |
. . . . . . . . . . . . . . . 16
⊢
((#‘𝑓) = 2
→ ((𝑝‘(#‘𝑓)) = 𝐶 ↔ (𝑝‘2) = 𝐶)) |
52 | 51 | 3anbi3d 1397 |
. . . . . . . . . . . . . . 15
⊢
((#‘𝑓) = 2
→ ((𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐶) ↔ (𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘2) = 𝐶))) |
53 | | fvex 6113 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑝‘0) ∈
V |
54 | | eleq1 2676 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑝‘0) = 𝐴 → ((𝑝‘0) ∈ V ↔ 𝐴 ∈ V)) |
55 | 53, 54 | mpbii 222 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑝‘0) = 𝐴 → 𝐴 ∈ V) |
56 | 55 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑝‘0) = 𝐴 ∧ (𝑝‘2) = 𝐶) → 𝐴 ∈ V) |
57 | | vex 3176 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑏 ∈ V |
58 | 57 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑝‘0) = 𝐴 ∧ (𝑝‘2) = 𝐶) → 𝑏 ∈ V) |
59 | | fvex 6113 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑝‘2) ∈
V |
60 | | eleq1 2676 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑝‘2) = 𝐶 → ((𝑝‘2) ∈ V ↔ 𝐶 ∈ V)) |
61 | 59, 60 | mpbii 222 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑝‘2) = 𝐶 → 𝐶 ∈ V) |
62 | 61 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑝‘0) = 𝐴 ∧ (𝑝‘2) = 𝐶) → 𝐶 ∈ V) |
63 | | ot2ndg 7074 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ∈ V ∧ 𝑏 ∈ V ∧ 𝐶 ∈ V) →
(2nd ‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝑏) |
64 | 56, 58, 62, 63 | syl3anc 1318 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑝‘0) = 𝐴 ∧ (𝑝‘2) = 𝐶) → (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝑏) |
65 | 64 | eqeq1d 2612 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑝‘0) = 𝐴 ∧ (𝑝‘2) = 𝐶) → ((2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ↔ 𝑏 = (𝑝‘1))) |
66 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐴 = (𝑝‘0) → 𝐴 = (𝑝‘0)) |
67 | 66 | eqcoms 2618 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑝‘0) = 𝐴 → 𝐴 = (𝑝‘0)) |
68 | 67 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑝‘0) = 𝐴 ∧ (𝑝‘2) = 𝐶) → 𝐴 = (𝑝‘0)) |
69 | 68 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑝‘0) = 𝐴 ∧ (𝑝‘2) = 𝐶) ∧ 𝑏 = (𝑝‘1)) → 𝐴 = (𝑝‘0)) |
70 | | simpr 476 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑝‘0) = 𝐴 ∧ (𝑝‘2) = 𝐶) ∧ 𝑏 = (𝑝‘1)) → 𝑏 = (𝑝‘1)) |
71 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐶 = (𝑝‘2) → 𝐶 = (𝑝‘2)) |
72 | 71 | eqcoms 2618 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑝‘2) = 𝐶 → 𝐶 = (𝑝‘2)) |
73 | 72 | ad2antlr 759 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑝‘0) = 𝐴 ∧ (𝑝‘2) = 𝐶) ∧ 𝑏 = (𝑝‘1)) → 𝐶 = (𝑝‘2)) |
74 | 69, 70, 73 | 3jca 1235 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑝‘0) = 𝐴 ∧ (𝑝‘2) = 𝐶) ∧ 𝑏 = (𝑝‘1)) → (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) |
75 | 74 | ex 449 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑝‘0) = 𝐴 ∧ (𝑝‘2) = 𝐶) → (𝑏 = (𝑝‘1) → (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) |
76 | 65, 75 | sylbid 229 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑝‘0) = 𝐴 ∧ (𝑝‘2) = 𝐶) → ((2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) → (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) |
77 | 76 | com12 32 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2nd ‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) → (((𝑝‘0) = 𝐴 ∧ (𝑝‘2) = 𝐶) → (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) |
78 | 77 | 3ad2ant2 1076 |
. . . . . . . . . . . . . . . . . 18
⊢
(((1st ‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶) → (((𝑝‘0) = 𝐴 ∧ (𝑝‘2) = 𝐶) → (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) |
79 | 78 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑝‘0) = 𝐴 ∧ (𝑝‘2) = 𝐶) → (((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶) → (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) |
80 | 79 | 3adant1 1072 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘2) = 𝐶) → (((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶) → (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) |
81 | 80 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢
((#‘𝑓) = 2
→ ((𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘2) = 𝐶) → (((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶) → (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))) |
82 | 52, 81 | sylbid 229 |
. . . . . . . . . . . . . 14
⊢
((#‘𝑓) = 2
→ ((𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐶) → (((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶) → (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))) |
83 | 82 | com12 32 |
. . . . . . . . . . . . 13
⊢ ((𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐶) → ((#‘𝑓) = 2 → (((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶) → (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))) |
84 | 83 | 3imp 1249 |
. . . . . . . . . . . 12
⊢ (((𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐶) ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶)) → (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) |
85 | 84 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) ∧ ((𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐶) ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶))) → (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) |
86 | 49, 50, 85 | 3jca 1235 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) ∧ ((𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐶) ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶))) → (𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) |
87 | 48, 86 | impbida 873 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) → ((𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) ↔ ((𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐶) ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶)))) |
88 | 87 | adantll 746 |
. . . . . . . 8
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → ((𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) ↔ ((𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐶) ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶)))) |
89 | | vex 3176 |
. . . . . . . . . . . . 13
⊢ 𝑓 ∈ V |
90 | | vex 3176 |
. . . . . . . . . . . . 13
⊢ 𝑝 ∈ V |
91 | 89, 90 | pm3.2i 470 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ V ∧ 𝑝 ∈ V) |
92 | | isspthonpth 26114 |
. . . . . . . . . . . 12
⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝑓 ∈ V ∧ 𝑝 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑓(𝐴(𝑉 SPathOn 𝐸)𝐶)𝑝 ↔ (𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐶))) |
93 | 91, 92 | mp3an2 1404 |
. . . . . . . . . . 11
⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑓(𝐴(𝑉 SPathOn 𝐸)𝐶)𝑝 ↔ (𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐶))) |
94 | 93 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → (𝑓(𝐴(𝑉 SPathOn 𝐸)𝐶)𝑝 ↔ (𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐶))) |
95 | 94 | bicomd 212 |
. . . . . . . . 9
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → ((𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐶) ↔ 𝑓(𝐴(𝑉 SPathOn 𝐸)𝐶)𝑝)) |
96 | 95 | 3anbi1d 1395 |
. . . . . . . 8
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → (((𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐶) ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶)) ↔ (𝑓(𝐴(𝑉 SPathOn 𝐸)𝐶)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶)))) |
97 | 88, 96 | bitrd 267 |
. . . . . . 7
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → ((𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) ↔ (𝑓(𝐴(𝑉 SPathOn 𝐸)𝐶)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶)))) |
98 | 97 | 2exbidv 1839 |
. . . . . 6
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → (∃𝑓∃𝑝(𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) ↔ ∃𝑓∃𝑝(𝑓(𝐴(𝑉 SPathOn 𝐸)𝐶)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶)))) |
99 | | eqidd 2611 |
. . . . . . . 8
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → 〈𝐴, 𝑏, 𝐶〉 = 〈𝐴, 𝑏, 𝐶〉) |
100 | 33 | ad2antlr 759 |
. . . . . . . 8
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → 𝐴 ∈ 𝑉) |
101 | | simpr 476 |
. . . . . . . 8
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → 𝑏 ∈ 𝑉) |
102 | 36 | ad2antlr 759 |
. . . . . . . 8
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → 𝐶 ∈ 𝑉) |
103 | | otel3xp 5077 |
. . . . . . . 8
⊢
((〈𝐴, 𝑏, 𝐶〉 = 〈𝐴, 𝑏, 𝐶〉 ∧ (𝐴 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 〈𝐴, 𝑏, 𝐶〉 ∈ ((𝑉 × 𝑉) × 𝑉)) |
104 | 99, 100, 101, 102, 103 | syl13anc 1320 |
. . . . . . 7
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → 〈𝐴, 𝑏, 𝐶〉 ∈ ((𝑉 × 𝑉) × 𝑉)) |
105 | 104 | biantrurd 528 |
. . . . . 6
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → (∃𝑓∃𝑝(𝑓(𝐴(𝑉 SPathOn 𝐸)𝐶)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶)) ↔ (〈𝐴, 𝑏, 𝐶〉 ∈ ((𝑉 × 𝑉) × 𝑉) ∧ ∃𝑓∃𝑝(𝑓(𝐴(𝑉 SPathOn 𝐸)𝐶)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶))))) |
106 | 98, 105 | bitrd 267 |
. . . . 5
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → (∃𝑓∃𝑝(𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) ↔ (〈𝐴, 𝑏, 𝐶〉 ∈ ((𝑉 × 𝑉) × 𝑉) ∧ ∃𝑓∃𝑝(𝑓(𝐴(𝑉 SPathOn 𝐸)𝐶)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = 𝐴 ∧ (2nd
‘(1st ‘〈𝐴, 𝑏, 𝐶〉)) = (𝑝‘1) ∧ (2nd
‘〈𝐴, 𝑏, 𝐶〉) = 𝐶))))) |
107 | 13, 16, 106 | 3bitr4rd 300 |
. . . 4
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → (∃𝑓∃𝑝(𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) ↔ 〈𝐴, 𝑏, 𝐶〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶))) |
108 | 107 | anbi2d 736 |
. . 3
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → ((𝑇 = 〈𝐴, 𝑏, 𝐶〉 ∧ ∃𝑓∃𝑝(𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ↔ (𝑇 = 〈𝐴, 𝑏, 𝐶〉 ∧ 〈𝐴, 𝑏, 𝐶〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶)))) |
109 | 108 | rexbidva 3031 |
. 2
⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (∃𝑏 ∈ 𝑉 (𝑇 = 〈𝐴, 𝑏, 𝐶〉 ∧ ∃𝑓∃𝑝(𝑓(𝑉 SPaths 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) ↔ ∃𝑏 ∈ 𝑉 (𝑇 = 〈𝐴, 𝑏, 𝐶〉 ∧ 〈𝐴, 𝑏, 𝐶〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶)))) |
110 | 1, 109 | bitrd 267 |
1
⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑇 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑇 = 〈𝐴, 𝑏, 𝐶〉 ∧ 〈𝐴, 𝑏, 𝐶〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶)))) |