Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > clwlkclwwlklem2a2 | Structured version Visualization version GIF version |
Description: Lemma 2 for clwlkclwwlklem2a 41207. (Contributed by Alexander van der Vekens, 21-Jun-2018.) |
Ref | Expression |
---|---|
clwlkclwwlklem2.f | ⊢ 𝐹 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ if(𝑥 < ((#‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}))) |
Ref | Expression |
---|---|
clwlkclwwlklem2a2 | ⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (#‘𝐹) = ((#‘𝑃) − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lencl 13179 | . . . 4 ⊢ (𝑃 ∈ Word 𝑉 → (#‘𝑃) ∈ ℕ0) | |
2 | nn0z 11277 | . . . . . 6 ⊢ ((#‘𝑃) ∈ ℕ0 → (#‘𝑃) ∈ ℤ) | |
3 | 2 | adantr 480 | . . . . 5 ⊢ (((#‘𝑃) ∈ ℕ0 ∧ 2 ≤ (#‘𝑃)) → (#‘𝑃) ∈ ℤ) |
4 | 0red 9920 | . . . . . 6 ⊢ (((#‘𝑃) ∈ ℕ0 ∧ 2 ≤ (#‘𝑃)) → 0 ∈ ℝ) | |
5 | 2re 10967 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
6 | 5 | a1i 11 | . . . . . 6 ⊢ (((#‘𝑃) ∈ ℕ0 ∧ 2 ≤ (#‘𝑃)) → 2 ∈ ℝ) |
7 | nn0re 11178 | . . . . . . 7 ⊢ ((#‘𝑃) ∈ ℕ0 → (#‘𝑃) ∈ ℝ) | |
8 | 7 | adantr 480 | . . . . . 6 ⊢ (((#‘𝑃) ∈ ℕ0 ∧ 2 ≤ (#‘𝑃)) → (#‘𝑃) ∈ ℝ) |
9 | 2pos 10989 | . . . . . . 7 ⊢ 0 < 2 | |
10 | 9 | a1i 11 | . . . . . 6 ⊢ (((#‘𝑃) ∈ ℕ0 ∧ 2 ≤ (#‘𝑃)) → 0 < 2) |
11 | simpr 476 | . . . . . 6 ⊢ (((#‘𝑃) ∈ ℕ0 ∧ 2 ≤ (#‘𝑃)) → 2 ≤ (#‘𝑃)) | |
12 | 4, 6, 8, 10, 11 | ltletrd 10076 | . . . . 5 ⊢ (((#‘𝑃) ∈ ℕ0 ∧ 2 ≤ (#‘𝑃)) → 0 < (#‘𝑃)) |
13 | elnnz 11264 | . . . . 5 ⊢ ((#‘𝑃) ∈ ℕ ↔ ((#‘𝑃) ∈ ℤ ∧ 0 < (#‘𝑃))) | |
14 | 3, 12, 13 | sylanbrc 695 | . . . 4 ⊢ (((#‘𝑃) ∈ ℕ0 ∧ 2 ≤ (#‘𝑃)) → (#‘𝑃) ∈ ℕ) |
15 | 1, 14 | sylan 487 | . . 3 ⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (#‘𝑃) ∈ ℕ) |
16 | nnm1nn0 11211 | . . 3 ⊢ ((#‘𝑃) ∈ ℕ → ((#‘𝑃) − 1) ∈ ℕ0) | |
17 | 15, 16 | syl 17 | . 2 ⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → ((#‘𝑃) − 1) ∈ ℕ0) |
18 | fvex 6113 | . . . 4 ⊢ (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) ∈ V | |
19 | fvex 6113 | . . . 4 ⊢ (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}) ∈ V | |
20 | 18, 19 | ifex 4106 | . . 3 ⊢ if(𝑥 < ((#‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)})) ∈ V |
21 | clwlkclwwlklem2.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ if(𝑥 < ((#‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}))) | |
22 | 20, 21 | fnmpti 5935 | . 2 ⊢ 𝐹 Fn (0..^((#‘𝑃) − 1)) |
23 | ffzo0hash 13090 | . 2 ⊢ ((((#‘𝑃) − 1) ∈ ℕ0 ∧ 𝐹 Fn (0..^((#‘𝑃) − 1))) → (#‘𝐹) = ((#‘𝑃) − 1)) | |
24 | 17, 22, 23 | sylancl 693 | 1 ⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (#‘𝐹) = ((#‘𝑃) − 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ifcif 4036 {cpr 4127 class class class wbr 4583 ↦ cmpt 4643 ◡ccnv 5037 Fn wfn 5799 ‘cfv 5804 (class class class)co 6549 ℝcr 9814 0cc0 9815 1c1 9816 + caddc 9818 < clt 9953 ≤ cle 9954 − cmin 10145 ℕcn 10897 2c2 10947 ℕ0cn0 11169 ℤcz 11254 ..^cfzo 12334 #chash 12979 Word cword 13146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-fzo 12335 df-hash 12980 df-word 13154 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |