Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clwlkclwwlklem2a1 Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem2a1 41201
Description: Lemma 1 for clwlkclwwlklem2a 41207. (Contributed by Alexander van der Vekens, 21-Jun-2018.) (Revised by AV, 11-Apr-2021.)
Assertion
Ref Expression
clwlkclwwlklem2a1 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → ((( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
Distinct variable groups:   𝑖,𝐸   𝑃,𝑖
Allowed substitution hint:   𝑉(𝑖)

Proof of Theorem clwlkclwwlklem2a1
StepHypRef Expression
1 lencl 13179 . . . . . . . . . . . 12 (𝑃 ∈ Word 𝑉 → (#‘𝑃) ∈ ℕ0)
2 nn0cn 11179 . . . . . . . . . . . 12 ((#‘𝑃) ∈ ℕ0 → (#‘𝑃) ∈ ℂ)
3 peano2cnm 10226 . . . . . . . . . . . . . . 15 ((#‘𝑃) ∈ ℂ → ((#‘𝑃) − 1) ∈ ℂ)
43subid1d 10260 . . . . . . . . . . . . . 14 ((#‘𝑃) ∈ ℂ → (((#‘𝑃) − 1) − 0) = ((#‘𝑃) − 1))
54oveq1d 6564 . . . . . . . . . . . . 13 ((#‘𝑃) ∈ ℂ → ((((#‘𝑃) − 1) − 0) − 1) = (((#‘𝑃) − 1) − 1))
6 sub1m1 11161 . . . . . . . . . . . . 13 ((#‘𝑃) ∈ ℂ → (((#‘𝑃) − 1) − 1) = ((#‘𝑃) − 2))
75, 6eqtrd 2644 . . . . . . . . . . . 12 ((#‘𝑃) ∈ ℂ → ((((#‘𝑃) − 1) − 0) − 1) = ((#‘𝑃) − 2))
81, 2, 73syl 18 . . . . . . . . . . 11 (𝑃 ∈ Word 𝑉 → ((((#‘𝑃) − 1) − 0) − 1) = ((#‘𝑃) − 2))
98adantr 480 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → ((((#‘𝑃) − 1) − 0) − 1) = ((#‘𝑃) − 2))
109oveq2d 6565 . . . . . . . . 9 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (0..^((((#‘𝑃) − 1) − 0) − 1)) = (0..^((#‘𝑃) − 2)))
1110raleqdv 3121 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ∀𝑖 ∈ (0..^((#‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
1211biimpcd 238 . . . . . . 7 (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → ∀𝑖 ∈ (0..^((#‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
1312adantr 480 . . . . . 6 ((∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → ∀𝑖 ∈ (0..^((#‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
1413adantl 481 . . . . 5 ((( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → ∀𝑖 ∈ (0..^((#‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
1514impcom 445 . . . 4 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ∀𝑖 ∈ (0..^((#‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)
16 lsw 13204 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word 𝑉 → ( lastS ‘𝑃) = (𝑃‘((#‘𝑃) − 1)))
17 2m1e1 11012 . . . . . . . . . . . . . . . . . . . . 21 (2 − 1) = 1
1817a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ Word 𝑉 → (2 − 1) = 1)
1918eqcomd 2616 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Word 𝑉 → 1 = (2 − 1))
2019oveq2d 6565 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Word 𝑉 → ((#‘𝑃) − 1) = ((#‘𝑃) − (2 − 1)))
211, 2syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Word 𝑉 → (#‘𝑃) ∈ ℂ)
22 2cnd 10970 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Word 𝑉 → 2 ∈ ℂ)
23 1cnd 9935 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Word 𝑉 → 1 ∈ ℂ)
2421, 22, 23subsubd 10299 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Word 𝑉 → ((#‘𝑃) − (2 − 1)) = (((#‘𝑃) − 2) + 1))
2520, 24eqtrd 2644 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Word 𝑉 → ((#‘𝑃) − 1) = (((#‘𝑃) − 2) + 1))
2625fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word 𝑉 → (𝑃‘((#‘𝑃) − 1)) = (𝑃‘(((#‘𝑃) − 2) + 1)))
2716, 26eqtrd 2644 . . . . . . . . . . . . . . 15 (𝑃 ∈ Word 𝑉 → ( lastS ‘𝑃) = (𝑃‘(((#‘𝑃) − 2) + 1)))
2827adantr 480 . . . . . . . . . . . . . 14 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → ( lastS ‘𝑃) = (𝑃‘(((#‘𝑃) − 2) + 1)))
2928adantr 480 . . . . . . . . . . . . 13 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ ( lastS ‘𝑃) = (𝑃‘0)) → ( lastS ‘𝑃) = (𝑃‘(((#‘𝑃) − 2) + 1)))
30 eqeq1 2614 . . . . . . . . . . . . . 14 (( lastS ‘𝑃) = (𝑃‘0) → (( lastS ‘𝑃) = (𝑃‘(((#‘𝑃) − 2) + 1)) ↔ (𝑃‘0) = (𝑃‘(((#‘𝑃) − 2) + 1))))
3130adantl 481 . . . . . . . . . . . . 13 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ ( lastS ‘𝑃) = (𝑃‘0)) → (( lastS ‘𝑃) = (𝑃‘(((#‘𝑃) − 2) + 1)) ↔ (𝑃‘0) = (𝑃‘(((#‘𝑃) − 2) + 1))))
3229, 31mpbid 221 . . . . . . . . . . . 12 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ ( lastS ‘𝑃) = (𝑃‘0)) → (𝑃‘0) = (𝑃‘(((#‘𝑃) − 2) + 1)))
3332preq2d 4219 . . . . . . . . . . 11 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ ( lastS ‘𝑃) = (𝑃‘0)) → {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} = {(𝑃‘((#‘𝑃) − 2)), (𝑃‘(((#‘𝑃) − 2) + 1))})
3433eleq1d 2672 . . . . . . . . . 10 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ ( lastS ‘𝑃) = (𝑃‘0)) → ({(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 ↔ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘(((#‘𝑃) − 2) + 1))} ∈ ran 𝐸))
3534biimpd 218 . . . . . . . . 9 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ ( lastS ‘𝑃) = (𝑃‘0)) → ({(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 → {(𝑃‘((#‘𝑃) − 2)), (𝑃‘(((#‘𝑃) − 2) + 1))} ∈ ran 𝐸))
3635ex 449 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (( lastS ‘𝑃) = (𝑃‘0) → ({(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 → {(𝑃‘((#‘𝑃) − 2)), (𝑃‘(((#‘𝑃) − 2) + 1))} ∈ ran 𝐸)))
3736com13 86 . . . . . . 7 ({(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 → (( lastS ‘𝑃) = (𝑃‘0) → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → {(𝑃‘((#‘𝑃) − 2)), (𝑃‘(((#‘𝑃) − 2) + 1))} ∈ ran 𝐸)))
3837adantl 481 . . . . . 6 ((∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) → (( lastS ‘𝑃) = (𝑃‘0) → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → {(𝑃‘((#‘𝑃) − 2)), (𝑃‘(((#‘𝑃) − 2) + 1))} ∈ ran 𝐸)))
3938impcom 445 . . . . 5 ((( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → {(𝑃‘((#‘𝑃) − 2)), (𝑃‘(((#‘𝑃) − 2) + 1))} ∈ ran 𝐸))
4039impcom 445 . . . 4 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → {(𝑃‘((#‘𝑃) − 2)), (𝑃‘(((#‘𝑃) − 2) + 1))} ∈ ran 𝐸)
41 ovex 6577 . . . . . 6 ((#‘𝑃) − 2) ∈ V
4241a1i 11 . . . . 5 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ((#‘𝑃) − 2) ∈ V)
43 fveq2 6103 . . . . . . . 8 (𝑖 = ((#‘𝑃) − 2) → (𝑃𝑖) = (𝑃‘((#‘𝑃) − 2)))
44 oveq1 6556 . . . . . . . . 9 (𝑖 = ((#‘𝑃) − 2) → (𝑖 + 1) = (((#‘𝑃) − 2) + 1))
4544fveq2d 6107 . . . . . . . 8 (𝑖 = ((#‘𝑃) − 2) → (𝑃‘(𝑖 + 1)) = (𝑃‘(((#‘𝑃) − 2) + 1)))
4643, 45preq12d 4220 . . . . . . 7 (𝑖 = ((#‘𝑃) − 2) → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} = {(𝑃‘((#‘𝑃) − 2)), (𝑃‘(((#‘𝑃) − 2) + 1))})
4746eleq1d 2672 . . . . . 6 (𝑖 = ((#‘𝑃) − 2) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘(((#‘𝑃) − 2) + 1))} ∈ ran 𝐸))
4847ralunsn 4360 . . . . 5 (((#‘𝑃) − 2) ∈ V → (∀𝑖 ∈ ((0..^((#‘𝑃) − 2)) ∪ {((#‘𝑃) − 2)}){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ (∀𝑖 ∈ (0..^((#‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘(((#‘𝑃) − 2) + 1))} ∈ ran 𝐸)))
4942, 48syl 17 . . . 4 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → (∀𝑖 ∈ ((0..^((#‘𝑃) − 2)) ∪ {((#‘𝑃) − 2)}){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ (∀𝑖 ∈ (0..^((#‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘(((#‘𝑃) − 2) + 1))} ∈ ran 𝐸)))
5015, 40, 49mpbir2and 959 . . 3 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ∀𝑖 ∈ ((0..^((#‘𝑃) − 2)) ∪ {((#‘𝑃) − 2)}){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)
51 1e2m1 11013 . . . . . . . . . . 11 1 = (2 − 1)
5251a1i 11 . . . . . . . . . 10 (𝑃 ∈ Word 𝑉 → 1 = (2 − 1))
5352oveq2d 6565 . . . . . . . . 9 (𝑃 ∈ Word 𝑉 → ((#‘𝑃) − 1) = ((#‘𝑃) − (2 − 1)))
5453, 24eqtrd 2644 . . . . . . . 8 (𝑃 ∈ Word 𝑉 → ((#‘𝑃) − 1) = (((#‘𝑃) − 2) + 1))
5554oveq2d 6565 . . . . . . 7 (𝑃 ∈ Word 𝑉 → (0..^((#‘𝑃) − 1)) = (0..^(((#‘𝑃) − 2) + 1)))
5655adantr 480 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (0..^((#‘𝑃) − 1)) = (0..^(((#‘𝑃) − 2) + 1)))
57 nn0re 11178 . . . . . . . . . . . . . 14 ((#‘𝑃) ∈ ℕ0 → (#‘𝑃) ∈ ℝ)
58 2re 10967 . . . . . . . . . . . . . . 15 2 ∈ ℝ
5958a1i 11 . . . . . . . . . . . . . 14 ((#‘𝑃) ∈ ℕ0 → 2 ∈ ℝ)
6057, 59subge0d 10496 . . . . . . . . . . . . 13 ((#‘𝑃) ∈ ℕ0 → (0 ≤ ((#‘𝑃) − 2) ↔ 2 ≤ (#‘𝑃)))
6160biimprd 237 . . . . . . . . . . . 12 ((#‘𝑃) ∈ ℕ0 → (2 ≤ (#‘𝑃) → 0 ≤ ((#‘𝑃) − 2)))
62 nn0z 11277 . . . . . . . . . . . . 13 ((#‘𝑃) ∈ ℕ0 → (#‘𝑃) ∈ ℤ)
63 2z 11286 . . . . . . . . . . . . . 14 2 ∈ ℤ
6463a1i 11 . . . . . . . . . . . . 13 ((#‘𝑃) ∈ ℕ0 → 2 ∈ ℤ)
6562, 64zsubcld 11363 . . . . . . . . . . . 12 ((#‘𝑃) ∈ ℕ0 → ((#‘𝑃) − 2) ∈ ℤ)
6661, 65jctild 564 . . . . . . . . . . 11 ((#‘𝑃) ∈ ℕ0 → (2 ≤ (#‘𝑃) → (((#‘𝑃) − 2) ∈ ℤ ∧ 0 ≤ ((#‘𝑃) − 2))))
671, 66syl 17 . . . . . . . . . 10 (𝑃 ∈ Word 𝑉 → (2 ≤ (#‘𝑃) → (((#‘𝑃) − 2) ∈ ℤ ∧ 0 ≤ ((#‘𝑃) − 2))))
6867imp 444 . . . . . . . . 9 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (((#‘𝑃) − 2) ∈ ℤ ∧ 0 ≤ ((#‘𝑃) − 2)))
69 elnn0z 11267 . . . . . . . . 9 (((#‘𝑃) − 2) ∈ ℕ0 ↔ (((#‘𝑃) − 2) ∈ ℤ ∧ 0 ≤ ((#‘𝑃) − 2)))
7068, 69sylibr 223 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → ((#‘𝑃) − 2) ∈ ℕ0)
71 elnn0uz 11601 . . . . . . . 8 (((#‘𝑃) − 2) ∈ ℕ0 ↔ ((#‘𝑃) − 2) ∈ (ℤ‘0))
7270, 71sylib 207 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → ((#‘𝑃) − 2) ∈ (ℤ‘0))
73 fzosplitsn 12442 . . . . . . 7 (((#‘𝑃) − 2) ∈ (ℤ‘0) → (0..^(((#‘𝑃) − 2) + 1)) = ((0..^((#‘𝑃) − 2)) ∪ {((#‘𝑃) − 2)}))
7472, 73syl 17 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (0..^(((#‘𝑃) − 2) + 1)) = ((0..^((#‘𝑃) − 2)) ∪ {((#‘𝑃) − 2)}))
7556, 74eqtrd 2644 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (0..^((#‘𝑃) − 1)) = ((0..^((#‘𝑃) − 2)) ∪ {((#‘𝑃) − 2)}))
7675adantr 480 . . . 4 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → (0..^((#‘𝑃) − 1)) = ((0..^((#‘𝑃) − 2)) ∪ {((#‘𝑃) − 2)}))
7776raleqdv 3121 . . 3 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ∀𝑖 ∈ ((0..^((#‘𝑃) − 2)) ∪ {((#‘𝑃) − 2)}){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
7850, 77mpbird 246 . 2 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)
7978ex 449 1 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → ((( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cun 3538  {csn 4125  {cpr 4127   class class class wbr 4583  ran crn 5039  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  cle 9954  cmin 10145  2c2 10947  0cn0 11169  cz 11254  cuz 11563  ..^cfzo 12334  #chash 12979  Word cword 13146   lastS clsw 13147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-lsw 13155
This theorem is referenced by:  clwlkclwwlklem2a  41207
  Copyright terms: Public domain W3C validator