MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpdmatlem2 Structured version   Visualization version   GIF version

Theorem chpdmatlem2 20463
Description: Lemma 2 for chpdmat 20465. (Contributed by AV, 18-Aug-2019.)
Hypotheses
Ref Expression
chpdmat.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chpdmat.p 𝑃 = (Poly1𝑅)
chpdmat.a 𝐴 = (𝑁 Mat 𝑅)
chpdmat.s 𝑆 = (algSc‘𝑃)
chpdmat.b 𝐵 = (Base‘𝐴)
chpdmat.x 𝑋 = (var1𝑅)
chpdmat.0 0 = (0g𝑅)
chpdmat.g 𝐺 = (mulGrp‘𝑃)
chpdmat.m = (-g𝑃)
chpdmatlem.q 𝑄 = (𝑁 Mat 𝑃)
chpdmatlem.1 1 = (1r𝑄)
chpdmatlem.m · = ( ·𝑠𝑄)
chpdmatlem.z 𝑍 = (-g𝑄)
chpdmatlem.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
chpdmatlem2 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖((𝑋 · 1 )𝑍(𝑇𝑀))𝑗) = (0g𝑃))

Proof of Theorem chpdmatlem2
StepHypRef Expression
1 chpdmat.p . . . . . 6 𝑃 = (Poly1𝑅)
21ply1ring 19439 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
323ad2ant2 1076 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
43ad4antr 764 . . 3 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → 𝑃 ∈ Ring)
5 chpdmat.c . . . . . 6 𝐶 = (𝑁 CharPlyMat 𝑅)
6 chpdmat.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
7 chpdmat.s . . . . . 6 𝑆 = (algSc‘𝑃)
8 chpdmat.b . . . . . 6 𝐵 = (Base‘𝐴)
9 chpdmat.x . . . . . 6 𝑋 = (var1𝑅)
10 chpdmat.0 . . . . . 6 0 = (0g𝑅)
11 chpdmat.g . . . . . 6 𝐺 = (mulGrp‘𝑃)
12 chpdmat.m . . . . . 6 = (-g𝑃)
13 chpdmatlem.q . . . . . 6 𝑄 = (𝑁 Mat 𝑃)
14 chpdmatlem.1 . . . . . 6 1 = (1r𝑄)
15 chpdmatlem.m . . . . . 6 · = ( ·𝑠𝑄)
165, 1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15chpdmatlem0 20461 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 · 1 ) ∈ (Base‘𝑄))
17163adant3 1074 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑄))
1817ad4antr 764 . . 3 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑋 · 1 ) ∈ (Base‘𝑄))
19 chpdmatlem.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
2019, 6, 8, 1, 13mat2pmatbas 20350 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑄))
2120ad4antr 764 . . 3 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑇𝑀) ∈ (Base‘𝑄))
22 simpr 476 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) → 𝑖𝑁)
2322anim1i 590 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (𝑖𝑁𝑗𝑁))
2423ad2antrr 758 . . 3 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖𝑁𝑗𝑁))
25 eqid 2610 . . . 4 (Base‘𝑄) = (Base‘𝑄)
26 chpdmatlem.z . . . 4 𝑍 = (-g𝑄)
2713, 25, 26, 12matsubgcell 20059 . . 3 ((𝑃 ∈ Ring ∧ ((𝑋 · 1 ) ∈ (Base‘𝑄) ∧ (𝑇𝑀) ∈ (Base‘𝑄)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑋 · 1 )𝑍(𝑇𝑀))𝑗) = ((𝑖(𝑋 · 1 )𝑗) (𝑖(𝑇𝑀)𝑗)))
284, 18, 21, 24, 27syl121anc 1323 . 2 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖((𝑋 · 1 )𝑍(𝑇𝑀))𝑗) = ((𝑖(𝑋 · 1 )𝑗) (𝑖(𝑇𝑀)𝑗)))
293ad2antrr 758 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → 𝑃 ∈ Ring)
30 eqid 2610 . . . . . . . . . 10 (Base‘𝑃) = (Base‘𝑃)
319, 1, 30vr1cl 19408 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
32313ad2ant2 1076 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘𝑃))
331, 13pmatring 20317 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring)
34333adant3 1074 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑄 ∈ Ring)
3525, 14ringidcl 18391 . . . . . . . . 9 (𝑄 ∈ Ring → 1 ∈ (Base‘𝑄))
3634, 35syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 1 ∈ (Base‘𝑄))
3732, 36jca 553 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)))
3837ad2antrr 758 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)))
3929, 38, 233jca 1235 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (𝑃 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)) ∧ (𝑖𝑁𝑗𝑁)))
4039ad2antrr 758 . . . 4 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑃 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)) ∧ (𝑖𝑁𝑗𝑁)))
41 eqid 2610 . . . . 5 (.r𝑃) = (.r𝑃)
4213, 25, 30, 15, 41matvscacell 20061 . . . 4 ((𝑃 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑄)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑋 · 1 )𝑗) = (𝑋(.r𝑃)(𝑖 1 𝑗)))
4340, 42syl 17 . . 3 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖(𝑋 · 1 )𝑗) = (𝑋(.r𝑃)(𝑖 1 𝑗)))
4443oveq1d 6564 . 2 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → ((𝑖(𝑋 · 1 )𝑗) (𝑖(𝑇𝑀)𝑗)) = ((𝑋(.r𝑃)(𝑖 1 𝑗)) (𝑖(𝑇𝑀)𝑗)))
45 eqid 2610 . . . . . . . . 9 (1r𝑃) = (1r𝑃)
46 eqid 2610 . . . . . . . . 9 (0g𝑃) = (0g𝑃)
47 simpll1 1093 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → 𝑁 ∈ Fin)
4822adantr 480 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → 𝑖𝑁)
49 simpr 476 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → 𝑗𝑁)
5013, 45, 46, 47, 29, 48, 49, 14mat1ov 20073 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)))
51 ifnefalse 4048 . . . . . . . 8 (𝑖𝑗 → if(𝑖 = 𝑗, (1r𝑃), (0g𝑃)) = (0g𝑃))
5250, 51sylan9eq 2664 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) → (𝑖 1 𝑗) = (0g𝑃))
5352oveq2d 6565 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) → (𝑋(.r𝑃)(𝑖 1 𝑗)) = (𝑋(.r𝑃)(0g𝑃)))
542, 31jca 553 . . . . . . . . . 10 (𝑅 ∈ Ring → (𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)))
55543ad2ant2 1076 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)))
5630, 41, 46ringrz 18411 . . . . . . . . 9 ((𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑋(.r𝑃)(0g𝑃)) = (0g𝑃))
5755, 56syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑋(.r𝑃)(0g𝑃)) = (0g𝑃))
5857adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) → (𝑋(.r𝑃)(0g𝑃)) = (0g𝑃))
5958ad2antrr 758 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) → (𝑋(.r𝑃)(0g𝑃)) = (0g𝑃))
6053, 59eqtrd 2644 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) → (𝑋(.r𝑃)(𝑖 1 𝑗)) = (0g𝑃))
6160adantr 480 . . . 4 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑋(.r𝑃)(𝑖 1 𝑗)) = (0g𝑃))
62 simpll 786 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵))
6362, 23jca 553 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)))
6463ad2antrr 758 . . . . 5 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)))
6519, 6, 8, 1, 7mat2pmatvalel 20349 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑀)𝑗) = (𝑆‘(𝑖𝑀𝑗)))
6664, 65syl 17 . . . 4 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖(𝑇𝑀)𝑗) = (𝑆‘(𝑖𝑀𝑗)))
6761, 66oveq12d 6567 . . 3 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → ((𝑋(.r𝑃)(𝑖 1 𝑗)) (𝑖(𝑇𝑀)𝑗)) = ((0g𝑃) (𝑆‘(𝑖𝑀𝑗))))
68 fveq2 6103 . . . . . 6 ((𝑖𝑀𝑗) = 0 → (𝑆‘(𝑖𝑀𝑗)) = (𝑆0 ))
6968adantl 481 . . . . 5 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑆‘(𝑖𝑀𝑗)) = (𝑆0 ))
701, 7, 10, 46ply1scl0 19481 . . . . . . 7 (𝑅 ∈ Ring → (𝑆0 ) = (0g𝑃))
71703ad2ant2 1076 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑆0 ) = (0g𝑃))
7271ad4antr 764 . . . . 5 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑆0 ) = (0g𝑃))
7369, 72eqtrd 2644 . . . 4 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑆‘(𝑖𝑀𝑗)) = (0g𝑃))
7473oveq2d 6565 . . 3 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → ((0g𝑃) (𝑆‘(𝑖𝑀𝑗))) = ((0g𝑃) (0g𝑃)))
75 ringgrp 18375 . . . . . . . 8 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
762, 75syl 17 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ Grp)
7730, 46grpidcl 17273 . . . . . . 7 (𝑃 ∈ Grp → (0g𝑃) ∈ (Base‘𝑃))
7876, 77jccir 560 . . . . . 6 (𝑅 ∈ Ring → (𝑃 ∈ Grp ∧ (0g𝑃) ∈ (Base‘𝑃)))
79783ad2ant2 1076 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑃 ∈ Grp ∧ (0g𝑃) ∈ (Base‘𝑃)))
8030, 46, 12grpsubid 17322 . . . . 5 ((𝑃 ∈ Grp ∧ (0g𝑃) ∈ (Base‘𝑃)) → ((0g𝑃) (0g𝑃)) = (0g𝑃))
8179, 80syl 17 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((0g𝑃) (0g𝑃)) = (0g𝑃))
8281ad4antr 764 . . 3 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → ((0g𝑃) (0g𝑃)) = (0g𝑃))
8367, 74, 823eqtrd 2648 . 2 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → ((𝑋(.r𝑃)(𝑖 1 𝑗)) (𝑖(𝑇𝑀)𝑗)) = (0g𝑃))
8428, 44, 833eqtrd 2648 1 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖((𝑋 · 1 )𝑍(𝑇𝑀))𝑗) = (0g𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  ifcif 4036  cfv 5804  (class class class)co 6549  Fincfn 7841  Basecbs 15695  .rcmulr 15769   ·𝑠 cvsca 15772  0gc0g 15923  Grpcgrp 17245  -gcsg 17247  mulGrpcmgp 18312  1rcur 18324  Ringcrg 18370  algSccascl 19132  var1cv1 19367  Poly1cpl1 19368   Mat cmat 20032   matToPolyMat cmat2pmat 20328   CharPlyMat cchpmat 20450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-subrg 18601  df-lmod 18688  df-lss 18754  df-sra 18993  df-rgmod 18994  df-ascl 19135  df-psr 19177  df-mvr 19178  df-mpl 19179  df-opsr 19181  df-psr1 19371  df-vr1 19372  df-ply1 19373  df-dsmm 19895  df-frlm 19910  df-mamu 20009  df-mat 20033  df-mat2pmat 20331
This theorem is referenced by:  chpdmat  20465
  Copyright terms: Public domain W3C validator