Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemcvg Structured version   Visualization version   GIF version

Theorem binomcxplemcvg 37575
Description: Lemma for binomcxp 37578. The sum in binomcxplemnn0 37570 and its derivative (see the next theorem, binomcxplemdvsum 37576) converge, as long as their base 𝐽 is within the disk of convergence. Part of remark "This convergence allows us to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
binomcxplem.f 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
binomcxplem.s 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
binomcxplem.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
binomcxplem.e 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
binomcxplem.d 𝐷 = (abs “ (0[,)𝑅))
Assertion
Ref Expression
binomcxplemcvg ((𝜑𝐽𝐷) → (seq0( + , (𝑆𝐽)) ∈ dom ⇝ ∧ seq1( + , (𝐸𝐽)) ∈ dom ⇝ ))
Distinct variable groups:   𝑘,𝑏,𝜑   𝐹,𝑏,𝑘   𝐽,𝑏,𝑘   𝑟,𝑏,𝐽   𝜑,𝑗   𝑆,𝑟
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑗,𝑘,𝑟,𝑏)   𝐵(𝑗,𝑘,𝑟,𝑏)   𝐶(𝑗,𝑘,𝑟,𝑏)   𝐷(𝑗,𝑘,𝑟,𝑏)   𝑅(𝑗,𝑘,𝑟,𝑏)   𝑆(𝑗,𝑘,𝑏)   𝐸(𝑗,𝑘,𝑟,𝑏)   𝐹(𝑗,𝑟)   𝐽(𝑗)

Proof of Theorem binomcxplemcvg
StepHypRef Expression
1 binomcxplem.s . . 3 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
2 binomcxp.c . . . . . . 7 (𝜑𝐶 ∈ ℂ)
32adantr 480 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 𝐶 ∈ ℂ)
4 simpr 476 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
53, 4bcccl 37560 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ ℂ)
6 binomcxplem.f . . . . 5 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
75, 6fmptd 6292 . . . 4 (𝜑𝐹:ℕ0⟶ℂ)
87adantr 480 . . 3 ((𝜑𝐽𝐷) → 𝐹:ℕ0⟶ℂ)
9 binomcxplem.r . . 3 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
10 binomcxplem.d . . . . . . 7 𝐷 = (abs “ (0[,)𝑅))
1110eleq2i 2680 . . . . . 6 (𝐽𝐷𝐽 ∈ (abs “ (0[,)𝑅)))
12 absf 13925 . . . . . . 7 abs:ℂ⟶ℝ
13 ffn 5958 . . . . . . 7 (abs:ℂ⟶ℝ → abs Fn ℂ)
14 elpreima 6245 . . . . . . 7 (abs Fn ℂ → (𝐽 ∈ (abs “ (0[,)𝑅)) ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅))))
1512, 13, 14mp2b 10 . . . . . 6 (𝐽 ∈ (abs “ (0[,)𝑅)) ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅)))
1611, 15bitri 263 . . . . 5 (𝐽𝐷 ↔ (𝐽 ∈ ℂ ∧ (abs‘𝐽) ∈ (0[,)𝑅)))
1716simplbi 475 . . . 4 (𝐽𝐷𝐽 ∈ ℂ)
1817adantl 481 . . 3 ((𝜑𝐽𝐷) → 𝐽 ∈ ℂ)
1916simprbi 479 . . . . 5 (𝐽𝐷 → (abs‘𝐽) ∈ (0[,)𝑅))
20 0re 9919 . . . . . . 7 0 ∈ ℝ
21 ssrab2 3650 . . . . . . . . . 10 {𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ
22 ressxr 9962 . . . . . . . . . 10 ℝ ⊆ ℝ*
2321, 22sstri 3577 . . . . . . . . 9 {𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ*
24 supxrcl 12017 . . . . . . . . 9 ({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } ⊆ ℝ* → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
2523, 24ax-mp 5 . . . . . . . 8 sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*
269, 25eqeltri 2684 . . . . . . 7 𝑅 ∈ ℝ*
27 elico2 12108 . . . . . . 7 ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝐽) ∈ (0[,)𝑅) ↔ ((abs‘𝐽) ∈ ℝ ∧ 0 ≤ (abs‘𝐽) ∧ (abs‘𝐽) < 𝑅)))
2820, 26, 27mp2an 704 . . . . . 6 ((abs‘𝐽) ∈ (0[,)𝑅) ↔ ((abs‘𝐽) ∈ ℝ ∧ 0 ≤ (abs‘𝐽) ∧ (abs‘𝐽) < 𝑅))
2928simp3bi 1071 . . . . 5 ((abs‘𝐽) ∈ (0[,)𝑅) → (abs‘𝐽) < 𝑅)
3019, 29syl 17 . . . 4 (𝐽𝐷 → (abs‘𝐽) < 𝑅)
3130adantl 481 . . 3 ((𝜑𝐽𝐷) → (abs‘𝐽) < 𝑅)
321, 8, 9, 18, 31radcnvlt2 23977 . 2 ((𝜑𝐽𝐷) → seq0( + , (𝑆𝐽)) ∈ dom ⇝ )
33 binomcxplem.e . . . . . . 7 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
3433a1i 11 . . . . . 6 ((𝜑𝐽 ∈ ℂ) → 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1))))))
35 simplr 788 . . . . . . . . 9 ((((𝜑𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → 𝑏 = 𝐽)
3635oveq1d 6564 . . . . . . . 8 ((((𝜑𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → (𝑏↑(𝑘 − 1)) = (𝐽↑(𝑘 − 1)))
3736oveq2d 6565 . . . . . . 7 ((((𝜑𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1))) = ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1))))
3837mpteq2dva 4672 . . . . . 6 (((𝜑𝐽 ∈ ℂ) ∧ 𝑏 = 𝐽) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))))
39 simpr 476 . . . . . 6 ((𝜑𝐽 ∈ ℂ) → 𝐽 ∈ ℂ)
40 nnex 10903 . . . . . . . 8 ℕ ∈ V
4140mptex 6390 . . . . . . 7 (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))) ∈ V
4241a1i 11 . . . . . 6 ((𝜑𝐽 ∈ ℂ) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))) ∈ V)
4334, 38, 39, 42fvmptd 6197 . . . . 5 ((𝜑𝐽 ∈ ℂ) → (𝐸𝐽) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))))
4417, 43sylan2 490 . . . 4 ((𝜑𝐽𝐷) → (𝐸𝐽) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))))
4544seqeq3d 12671 . . 3 ((𝜑𝐽𝐷) → seq1( + , (𝐸𝐽)) = seq1( + , (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1))))))
46 eqid 2610 . . . 4 (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1))))
471, 9, 46, 8, 18, 31dvradcnv2 37568 . . 3 ((𝜑𝐽𝐷) → seq1( + , (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝐽↑(𝑘 − 1))))) ∈ dom ⇝ )
4845, 47eqeltrd 2688 . 2 ((𝜑𝐽𝐷) → seq1( + , (𝐸𝐽)) ∈ dom ⇝ )
4932, 48jca 553 1 ((𝜑𝐽𝐷) → (seq0( + , (𝑆𝐽)) ∈ dom ⇝ ∧ seq1( + , (𝐸𝐽)) ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  wss 3540   class class class wbr 4583  cmpt 4643  ccnv 5037  dom cdm 5038  cima 5041   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  supcsup 8229  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  *cxr 9952   < clt 9953  cle 9954  cmin 10145  cn 10897  0cn0 11169  +crp 11708  [,)cico 12048  seqcseq 12663  cexp 12722  abscabs 13822  cli 14063  C𝑐cbcc 37557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-prod 14475  df-fallfac 14577  df-bcc 37558
This theorem is referenced by:  binomcxplemnotnn0  37577
  Copyright terms: Public domain W3C validator