Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bcrpcl | Structured version Visualization version GIF version |
Description: Closure of the binomial coefficient in the positive reals. (This is mostly a lemma before we have bccl2 12972.) (Contributed by Mario Carneiro, 10-Mar-2014.) |
Ref | Expression |
---|---|
bcrpcl | ⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bcval2 12954 | . 2 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) | |
2 | elfz3nn0 12303 | . . . 4 ⊢ (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0) | |
3 | faccl 12932 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐾 ∈ (0...𝑁) → (!‘𝑁) ∈ ℕ) |
5 | fznn0sub 12244 | . . . 4 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈ ℕ0) | |
6 | elfznn0 12302 | . . . 4 ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0) | |
7 | faccl 12932 | . . . . 5 ⊢ ((𝑁 − 𝐾) ∈ ℕ0 → (!‘(𝑁 − 𝐾)) ∈ ℕ) | |
8 | faccl 12932 | . . . . 5 ⊢ (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℕ) | |
9 | nnmulcl 10920 | . . . . 5 ⊢ (((!‘(𝑁 − 𝐾)) ∈ ℕ ∧ (!‘𝐾) ∈ ℕ) → ((!‘(𝑁 − 𝐾)) · (!‘𝐾)) ∈ ℕ) | |
10 | 7, 8, 9 | syl2an 493 | . . . 4 ⊢ (((𝑁 − 𝐾) ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → ((!‘(𝑁 − 𝐾)) · (!‘𝐾)) ∈ ℕ) |
11 | 5, 6, 10 | syl2anc 691 | . . 3 ⊢ (𝐾 ∈ (0...𝑁) → ((!‘(𝑁 − 𝐾)) · (!‘𝐾)) ∈ ℕ) |
12 | nnrp 11718 | . . . 4 ⊢ ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℝ+) | |
13 | nnrp 11718 | . . . 4 ⊢ (((!‘(𝑁 − 𝐾)) · (!‘𝐾)) ∈ ℕ → ((!‘(𝑁 − 𝐾)) · (!‘𝐾)) ∈ ℝ+) | |
14 | rpdivcl 11732 | . . . 4 ⊢ (((!‘𝑁) ∈ ℝ+ ∧ ((!‘(𝑁 − 𝐾)) · (!‘𝐾)) ∈ ℝ+) → ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))) ∈ ℝ+) | |
15 | 12, 13, 14 | syl2an 493 | . . 3 ⊢ (((!‘𝑁) ∈ ℕ ∧ ((!‘(𝑁 − 𝐾)) · (!‘𝐾)) ∈ ℕ) → ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))) ∈ ℝ+) |
16 | 4, 11, 15 | syl2anc 691 | . 2 ⊢ (𝐾 ∈ (0...𝑁) → ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))) ∈ ℝ+) |
17 | 1, 16 | eqeltrd 2688 | 1 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1977 ‘cfv 5804 (class class class)co 6549 0cc0 9815 · cmul 9820 − cmin 10145 / cdiv 10563 ℕcn 10897 ℕ0cn0 11169 ℝ+crp 11708 ...cfz 12197 !cfa 12922 Ccbc 12951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-n0 11170 df-z 11255 df-uz 11564 df-rp 11709 df-fz 12198 df-seq 12664 df-fac 12923 df-bc 12952 |
This theorem is referenced by: bcp1nk 12966 bcpasc 12970 bccl2 12972 bcm1n 28941 |
Copyright terms: Public domain | W3C validator |