Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bcm1n Structured version   Visualization version   GIF version

Theorem bcm1n 28941
Description: The proportion of one binomial coefficient to another with 𝑁 decreased by 1. (Contributed by Thierry Arnoux, 9-Nov-2016.)
Assertion
Ref Expression
bcm1n ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1)C𝐾) / (𝑁C𝐾)) = ((𝑁𝐾) / 𝑁))

Proof of Theorem bcm1n
StepHypRef Expression
1 bcp1n 12965 . . . . . . 7 (𝐾 ∈ (0...(𝑁 − 1)) → (((𝑁 − 1) + 1)C𝐾) = (((𝑁 − 1)C𝐾) · (((𝑁 − 1) + 1) / (((𝑁 − 1) + 1) − 𝐾))))
2 nnz 11276 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
32zcnd 11359 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
43adantl 481 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
5 1cnd 9935 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 1 ∈ ℂ)
64, 5npcand 10275 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) + 1) = 𝑁)
76oveq1d 6564 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) + 1)C𝐾) = (𝑁C𝐾))
86oveq1d 6564 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) + 1) − 𝐾) = (𝑁𝐾))
96, 8oveq12d 6567 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) + 1) / (((𝑁 − 1) + 1) − 𝐾)) = (𝑁 / (𝑁𝐾)))
109oveq2d 6565 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1)C𝐾) · (((𝑁 − 1) + 1) / (((𝑁 − 1) + 1) − 𝐾))) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾))))
117, 10eqeq12d 2625 . . . . . . 7 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((((𝑁 − 1) + 1)C𝐾) = (((𝑁 − 1)C𝐾) · (((𝑁 − 1) + 1) / (((𝑁 − 1) + 1) − 𝐾))) ↔ (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾)))))
121, 11syl5ib 233 . . . . . 6 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾 ∈ (0...(𝑁 − 1)) → (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾)))))
13123impia 1253 . . . . 5 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...(𝑁 − 1))) → (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾))))
14133anidm13 1376 . . . 4 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾))))
15 elfznn0 12302 . . . . . . . . 9 (𝐾 ∈ (0...(𝑁 − 1)) → 𝐾 ∈ ℕ0)
1615adantr 480 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℕ0)
17 simpr 476 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
1817nnnn0d 11228 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
19 elfzelz 12213 . . . . . . . . . . 11 (𝐾 ∈ (0...(𝑁 − 1)) → 𝐾 ∈ ℤ)
2019adantr 480 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℤ)
2120zred 11358 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℝ)
222adantl 481 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
2322zred 11358 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
24 elfzle2 12216 . . . . . . . . . . 11 (𝐾 ∈ (0...(𝑁 − 1)) → 𝐾 ≤ (𝑁 − 1))
2524adantr 480 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ≤ (𝑁 − 1))
26 zltlem1 11307 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁𝐾 ≤ (𝑁 − 1)))
2719, 2, 26syl2an 493 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾 < 𝑁𝐾 ≤ (𝑁 − 1)))
2825, 27mpbird 246 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 < 𝑁)
2921, 23, 28ltled 10064 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾𝑁)
30 elfz2nn0 12300 . . . . . . . 8 (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁))
3116, 18, 29, 30syl3anbrc 1239 . . . . . . 7 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ (0...𝑁))
32 bcrpcl 12957 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℝ+)
3331, 32syl 17 . . . . . 6 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁C𝐾) ∈ ℝ+)
3433rpcnd 11750 . . . . 5 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁C𝐾) ∈ ℂ)
3519zcnd 11359 . . . . . . . 8 (𝐾 ∈ (0...(𝑁 − 1)) → 𝐾 ∈ ℂ)
3635adantr 480 . . . . . . 7 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℂ)
374, 36subcld 10271 . . . . . 6 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁𝐾) ∈ ℂ)
3836, 4negsubdi2d 10287 . . . . . . 7 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → -(𝐾𝑁) = (𝑁𝐾))
3921, 23resubcld 10337 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾𝑁) ∈ ℝ)
4039recnd 9947 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾𝑁) ∈ ℂ)
414addid2d 10116 . . . . . . . . . . 11 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (0 + 𝑁) = 𝑁)
4228, 41breqtrrd 4611 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 < (0 + 𝑁))
43 0red 9920 . . . . . . . . . . 11 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 0 ∈ ℝ)
4421, 23, 43ltsubaddd 10502 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝐾𝑁) < 0 ↔ 𝐾 < (0 + 𝑁)))
4542, 44mpbird 246 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾𝑁) < 0)
4645lt0ne0d 10472 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾𝑁) ≠ 0)
4740, 46negne0d 10269 . . . . . . 7 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → -(𝐾𝑁) ≠ 0)
4838, 47eqnetrrd 2850 . . . . . 6 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁𝐾) ≠ 0)
494, 37, 48divcld 10680 . . . . 5 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁 / (𝑁𝐾)) ∈ ℂ)
50 bcrpcl 12957 . . . . . . 7 (𝐾 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1)C𝐾) ∈ ℝ+)
5150adantr 480 . . . . . 6 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1)C𝐾) ∈ ℝ+)
5251rpcnne0d 11757 . . . . 5 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1)C𝐾) ∈ ℂ ∧ ((𝑁 − 1)C𝐾) ≠ 0))
53 divmul2 10568 . . . . 5 (((𝑁C𝐾) ∈ ℂ ∧ (𝑁 / (𝑁𝐾)) ∈ ℂ ∧ (((𝑁 − 1)C𝐾) ∈ ℂ ∧ ((𝑁 − 1)C𝐾) ≠ 0)) → (((𝑁C𝐾) / ((𝑁 − 1)C𝐾)) = (𝑁 / (𝑁𝐾)) ↔ (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾)))))
5434, 49, 52, 53syl3anc 1318 . . . 4 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁C𝐾) / ((𝑁 − 1)C𝐾)) = (𝑁 / (𝑁𝐾)) ↔ (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾)))))
5514, 54mpbird 246 . . 3 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁C𝐾) / ((𝑁 − 1)C𝐾)) = (𝑁 / (𝑁𝐾)))
5655oveq2d 6565 . 2 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (1 / ((𝑁C𝐾) / ((𝑁 − 1)C𝐾))) = (1 / (𝑁 / (𝑁𝐾))))
5751rpcnd 11750 . . 3 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1)C𝐾) ∈ ℂ)
58 bccl2 12972 . . . . 5 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℕ)
5931, 58syl 17 . . . 4 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁C𝐾) ∈ ℕ)
6059nnne0d 10942 . . 3 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁C𝐾) ≠ 0)
61 bccl2 12972 . . . . 5 (𝐾 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1)C𝐾) ∈ ℕ)
6261nnne0d 10942 . . . 4 (𝐾 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1)C𝐾) ≠ 0)
6362adantr 480 . . 3 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1)C𝐾) ≠ 0)
6434, 57, 60, 63recdivd 10697 . 2 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (1 / ((𝑁C𝐾) / ((𝑁 − 1)C𝐾))) = (((𝑁 − 1)C𝐾) / (𝑁C𝐾)))
6517nnne0d 10942 . . 3 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
664, 37, 65, 48recdivd 10697 . 2 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (1 / (𝑁 / (𝑁𝐾))) = ((𝑁𝐾) / 𝑁))
6756, 64, 663eqtr3d 2652 1 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1)C𝐾) / (𝑁C𝐾)) = ((𝑁𝐾) / 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  0cn0 11169  cz 11254  +crp 11708  ...cfz 12197  Ccbc 12951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-seq 12664  df-fac 12923  df-bc 12952
This theorem is referenced by:  ballotlem2  29877
  Copyright terms: Public domain W3C validator