MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcrpcl Structured version   Unicode version

Theorem bcrpcl 12371
Description: Closure of the binomial coefficient in the positive reals. (This is mostly a lemma before we have bccl2 12386.) (Contributed by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcrpcl  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  e.  RR+ )

Proof of Theorem bcrpcl
StepHypRef Expression
1 bcval2 12368 . 2  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) )
2 elfz3nn0 11776 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  N  e.  NN0 )
3 faccl 12348 . . . 4  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
42, 3syl 16 . . 3  |-  ( K  e.  ( 0 ... N )  ->  ( ! `  N )  e.  NN )
5 fznn0sub 11720 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  ( N  -  K )  e.  NN0 )
6 elfznn0 11775 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  K  e.  NN0 )
7 faccl 12348 . . . . 5  |-  ( ( N  -  K )  e.  NN0  ->  ( ! `
 ( N  -  K ) )  e.  NN )
8 faccl 12348 . . . . 5  |-  ( K  e.  NN0  ->  ( ! `
 K )  e.  NN )
9 nnmulcl 10554 . . . . 5  |-  ( ( ( ! `  ( N  -  K )
)  e.  NN  /\  ( ! `  K )  e.  NN )  -> 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  e.  NN )
107, 8, 9syl2an 475 . . . 4  |-  ( ( ( N  -  K
)  e.  NN0  /\  K  e.  NN0 )  -> 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  e.  NN )
115, 6, 10syl2anc 659 . . 3  |-  ( K  e.  ( 0 ... N )  ->  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  e.  NN )
12 nnrp 11230 . . . 4  |-  ( ( ! `  N )  e.  NN  ->  ( ! `  N )  e.  RR+ )
13 nnrp 11230 . . . 4  |-  ( ( ( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  e.  NN  ->  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  e.  RR+ )
14 rpdivcl 11244 . . . 4  |-  ( ( ( ! `  N
)  e.  RR+  /\  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  e.  RR+ )  ->  (
( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) )  e.  RR+ )
1512, 13, 14syl2an 475 . . 3  |-  ( ( ( ! `  N
)  e.  NN  /\  ( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  e.  NN )  ->  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) )  e.  RR+ )
164, 11, 15syl2anc 659 . 2  |-  ( K  e.  ( 0 ... N )  ->  (
( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) )  e.  RR+ )
171, 16eqeltrd 2542 1  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  e.  RR+ )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1823   ` cfv 5570  (class class class)co 6270   0cc0 9481    x. cmul 9486    - cmin 9796    / cdiv 10202   NNcn 10531   NN0cn0 10791   RR+crp 11221   ...cfz 11675   !cfa 12338    _C cbc 12365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-fz 11676  df-seq 12093  df-fac 12339  df-bc 12366
This theorem is referenced by:  bcp1nk  12380  bcpasc  12384  bccl2  12386  bcm1n  27837
  Copyright terms: Public domain W3C validator