Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  angpieqvdlem Structured version   Visualization version   GIF version

Theorem angpieqvdlem 24355
 Description: Equivalence used in the proof of angpieqvd 24358. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
angpieqvdlem.A (𝜑𝐴 ∈ ℂ)
angpieqvdlem.B (𝜑𝐵 ∈ ℂ)
angpieqvdlem.C (𝜑𝐶 ∈ ℂ)
angpieqvdlem.AneB (𝜑𝐴𝐵)
angpieqvdlem.AneC (𝜑𝐴𝐶)
Assertion
Ref Expression
angpieqvdlem (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1)))

Proof of Theorem angpieqvdlem
StepHypRef Expression
1 angpieqvdlem.C . . . . . 6 (𝜑𝐶 ∈ ℂ)
2 angpieqvdlem.B . . . . . 6 (𝜑𝐵 ∈ ℂ)
31, 2subcld 10271 . . . . 5 (𝜑 → (𝐶𝐵) ∈ ℂ)
4 angpieqvdlem.A . . . . . 6 (𝜑𝐴 ∈ ℂ)
54, 2subcld 10271 . . . . 5 (𝜑 → (𝐴𝐵) ∈ ℂ)
6 angpieqvdlem.AneB . . . . . 6 (𝜑𝐴𝐵)
74, 2, 6subne0d 10280 . . . . 5 (𝜑 → (𝐴𝐵) ≠ 0)
83, 5, 7divcld 10680 . . . 4 (𝜑 → ((𝐶𝐵) / (𝐴𝐵)) ∈ ℂ)
98negcld 10258 . . 3 (𝜑 → -((𝐶𝐵) / (𝐴𝐵)) ∈ ℂ)
10 1cnd 9935 . . . 4 (𝜑 → 1 ∈ ℂ)
11 angpieqvdlem.AneC . . . . . . 7 (𝜑𝐴𝐶)
1211necomd 2837 . . . . . 6 (𝜑𝐶𝐴)
131, 4, 2, 12subneintr2d 10317 . . . . 5 (𝜑 → (𝐶𝐵) ≠ (𝐴𝐵))
143, 5, 7, 13divne1d 10691 . . . 4 (𝜑 → ((𝐶𝐵) / (𝐴𝐵)) ≠ 1)
158, 10, 14negned 10268 . . 3 (𝜑 → -((𝐶𝐵) / (𝐴𝐵)) ≠ -1)
169, 15xov1plusxeqvd 12189 . 2 (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ (-((𝐶𝐵) / (𝐴𝐵)) / (1 + -((𝐶𝐵) / (𝐴𝐵)))) ∈ (0(,)1)))
173, 5, 7divnegd 10693 . . . . . 6 (𝜑 → -((𝐶𝐵) / (𝐴𝐵)) = (-(𝐶𝐵) / (𝐴𝐵)))
181, 2negsubdi2d 10287 . . . . . . 7 (𝜑 → -(𝐶𝐵) = (𝐵𝐶))
1918oveq1d 6564 . . . . . 6 (𝜑 → (-(𝐶𝐵) / (𝐴𝐵)) = ((𝐵𝐶) / (𝐴𝐵)))
2017, 19eqtrd 2644 . . . . 5 (𝜑 → -((𝐶𝐵) / (𝐴𝐵)) = ((𝐵𝐶) / (𝐴𝐵)))
215, 7dividd 10678 . . . . . . . 8 (𝜑 → ((𝐴𝐵) / (𝐴𝐵)) = 1)
2221oveq1d 6564 . . . . . . 7 (𝜑 → (((𝐴𝐵) / (𝐴𝐵)) − ((𝐶𝐵) / (𝐴𝐵))) = (1 − ((𝐶𝐵) / (𝐴𝐵))))
235, 3, 5, 7divsubdird 10719 . . . . . . 7 (𝜑 → (((𝐴𝐵) − (𝐶𝐵)) / (𝐴𝐵)) = (((𝐴𝐵) / (𝐴𝐵)) − ((𝐶𝐵) / (𝐴𝐵))))
2410, 8negsubd 10277 . . . . . . 7 (𝜑 → (1 + -((𝐶𝐵) / (𝐴𝐵))) = (1 − ((𝐶𝐵) / (𝐴𝐵))))
2522, 23, 243eqtr4rd 2655 . . . . . 6 (𝜑 → (1 + -((𝐶𝐵) / (𝐴𝐵))) = (((𝐴𝐵) − (𝐶𝐵)) / (𝐴𝐵)))
264, 1, 2nnncan2d 10306 . . . . . . 7 (𝜑 → ((𝐴𝐵) − (𝐶𝐵)) = (𝐴𝐶))
2726oveq1d 6564 . . . . . 6 (𝜑 → (((𝐴𝐵) − (𝐶𝐵)) / (𝐴𝐵)) = ((𝐴𝐶) / (𝐴𝐵)))
2825, 27eqtrd 2644 . . . . 5 (𝜑 → (1 + -((𝐶𝐵) / (𝐴𝐵))) = ((𝐴𝐶) / (𝐴𝐵)))
2920, 28oveq12d 6567 . . . 4 (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) / (1 + -((𝐶𝐵) / (𝐴𝐵)))) = (((𝐵𝐶) / (𝐴𝐵)) / ((𝐴𝐶) / (𝐴𝐵))))
302, 1subcld 10271 . . . . 5 (𝜑 → (𝐵𝐶) ∈ ℂ)
314, 1subcld 10271 . . . . 5 (𝜑 → (𝐴𝐶) ∈ ℂ)
324, 1, 11subne0d 10280 . . . . 5 (𝜑 → (𝐴𝐶) ≠ 0)
3330, 31, 5, 32, 7divcan7d 10708 . . . 4 (𝜑 → (((𝐵𝐶) / (𝐴𝐵)) / ((𝐴𝐶) / (𝐴𝐵))) = ((𝐵𝐶) / (𝐴𝐶)))
342, 1, 4, 1, 11div2subd 10730 . . . 4 (𝜑 → ((𝐵𝐶) / (𝐴𝐶)) = ((𝐶𝐵) / (𝐶𝐴)))
3529, 33, 343eqtrrd 2649 . . 3 (𝜑 → ((𝐶𝐵) / (𝐶𝐴)) = (-((𝐶𝐵) / (𝐴𝐵)) / (1 + -((𝐶𝐵) / (𝐴𝐵)))))
3635eleq1d 2672 . 2 (𝜑 → (((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1) ↔ (-((𝐶𝐵) / (𝐴𝐵)) / (1 + -((𝐶𝐵) / (𝐴𝐵)))) ∈ (0(,)1)))
3716, 36bitr4d 270 1 (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∈ wcel 1977   ≠ wne 2780  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   + caddc 9818   − cmin 10145  -cneg 10146   / cdiv 10563  ℝ+crp 11708  (,)cioo 12046 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-rp 11709  df-ioo 12050 This theorem is referenced by:  angpieqvd  24358
 Copyright terms: Public domain W3C validator