MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  angpieqvdlem Structured version   Unicode version

Theorem angpieqvdlem 22223
Description: Equivalence used in the proof of angpieqvd 22226. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
angpieqvdlem.A  |-  ( ph  ->  A  e.  CC )
angpieqvdlem.B  |-  ( ph  ->  B  e.  CC )
angpieqvdlem.C  |-  ( ph  ->  C  e.  CC )
angpieqvdlem.AneB  |-  ( ph  ->  A  =/=  B )
angpieqvdlem.AneC  |-  ( ph  ->  A  =/=  C )
Assertion
Ref Expression
angpieqvdlem  |-  ( ph  ->  ( -u ( ( C  -  B )  /  ( A  -  B ) )  e.  RR+ 
<->  ( ( C  -  B )  /  ( C  -  A )
)  e.  ( 0 (,) 1 ) ) )

Proof of Theorem angpieqvdlem
StepHypRef Expression
1 angpieqvdlem.C . . . . . 6  |-  ( ph  ->  C  e.  CC )
2 angpieqvdlem.B . . . . . 6  |-  ( ph  ->  B  e.  CC )
31, 2subcld 9719 . . . . 5  |-  ( ph  ->  ( C  -  B
)  e.  CC )
4 angpieqvdlem.A . . . . . 6  |-  ( ph  ->  A  e.  CC )
54, 2subcld 9719 . . . . 5  |-  ( ph  ->  ( A  -  B
)  e.  CC )
6 angpieqvdlem.AneB . . . . . 6  |-  ( ph  ->  A  =/=  B )
74, 2, 6subne0d 9728 . . . . 5  |-  ( ph  ->  ( A  -  B
)  =/=  0 )
83, 5, 7divcld 10107 . . . 4  |-  ( ph  ->  ( ( C  -  B )  /  ( A  -  B )
)  e.  CC )
98negcld 9706 . . 3  |-  ( ph  -> 
-u ( ( C  -  B )  / 
( A  -  B
) )  e.  CC )
10 ax-1cn 9340 . . . . 5  |-  1  e.  CC
1110a1i 11 . . . 4  |-  ( ph  ->  1  e.  CC )
12 angpieqvdlem.AneC . . . . . . 7  |-  ( ph  ->  A  =/=  C )
1312necomd 2695 . . . . . 6  |-  ( ph  ->  C  =/=  A )
141, 4, 2, 13subneintr2d 9765 . . . . 5  |-  ( ph  ->  ( C  -  B
)  =/=  ( A  -  B ) )
153, 5, 7, 14divne1d 10118 . . . 4  |-  ( ph  ->  ( ( C  -  B )  /  ( A  -  B )
)  =/=  1 )
168, 11, 15negned 9716 . . 3  |-  ( ph  -> 
-u ( ( C  -  B )  / 
( A  -  B
) )  =/=  -u 1
)
179, 16xov1plusxeqvd 11431 . 2  |-  ( ph  ->  ( -u ( ( C  -  B )  /  ( A  -  B ) )  e.  RR+ 
<->  ( -u ( ( C  -  B )  /  ( A  -  B ) )  / 
( 1  +  -u ( ( C  -  B )  /  ( A  -  B )
) ) )  e.  ( 0 (,) 1
) ) )
183, 5, 7divnegd 10120 . . . . . 6  |-  ( ph  -> 
-u ( ( C  -  B )  / 
( A  -  B
) )  =  (
-u ( C  -  B )  /  ( A  -  B )
) )
191, 2negsubdi2d 9735 . . . . . . 7  |-  ( ph  -> 
-u ( C  -  B )  =  ( B  -  C ) )
2019oveq1d 6106 . . . . . 6  |-  ( ph  ->  ( -u ( C  -  B )  / 
( A  -  B
) )  =  ( ( B  -  C
)  /  ( A  -  B ) ) )
2118, 20eqtrd 2475 . . . . 5  |-  ( ph  -> 
-u ( ( C  -  B )  / 
( A  -  B
) )  =  ( ( B  -  C
)  /  ( A  -  B ) ) )
225, 7dividd 10105 . . . . . . . 8  |-  ( ph  ->  ( ( A  -  B )  /  ( A  -  B )
)  =  1 )
2322oveq1d 6106 . . . . . . 7  |-  ( ph  ->  ( ( ( A  -  B )  / 
( A  -  B
) )  -  (
( C  -  B
)  /  ( A  -  B ) ) )  =  ( 1  -  ( ( C  -  B )  / 
( A  -  B
) ) ) )
245, 3, 5, 7divsubdird 10146 . . . . . . 7  |-  ( ph  ->  ( ( ( A  -  B )  -  ( C  -  B
) )  /  ( A  -  B )
)  =  ( ( ( A  -  B
)  /  ( A  -  B ) )  -  ( ( C  -  B )  / 
( A  -  B
) ) ) )
2511, 8negsubd 9725 . . . . . . 7  |-  ( ph  ->  ( 1  +  -u ( ( C  -  B )  /  ( A  -  B )
) )  =  ( 1  -  ( ( C  -  B )  /  ( A  -  B ) ) ) )
2623, 24, 253eqtr4rd 2486 . . . . . 6  |-  ( ph  ->  ( 1  +  -u ( ( C  -  B )  /  ( A  -  B )
) )  =  ( ( ( A  -  B )  -  ( C  -  B )
)  /  ( A  -  B ) ) )
274, 1, 2nnncan2d 9754 . . . . . . 7  |-  ( ph  ->  ( ( A  -  B )  -  ( C  -  B )
)  =  ( A  -  C ) )
2827oveq1d 6106 . . . . . 6  |-  ( ph  ->  ( ( ( A  -  B )  -  ( C  -  B
) )  /  ( A  -  B )
)  =  ( ( A  -  C )  /  ( A  -  B ) ) )
2926, 28eqtrd 2475 . . . . 5  |-  ( ph  ->  ( 1  +  -u ( ( C  -  B )  /  ( A  -  B )
) )  =  ( ( A  -  C
)  /  ( A  -  B ) ) )
3021, 29oveq12d 6109 . . . 4  |-  ( ph  ->  ( -u ( ( C  -  B )  /  ( A  -  B ) )  / 
( 1  +  -u ( ( C  -  B )  /  ( A  -  B )
) ) )  =  ( ( ( B  -  C )  / 
( A  -  B
) )  /  (
( A  -  C
)  /  ( A  -  B ) ) ) )
312, 1subcld 9719 . . . . 5  |-  ( ph  ->  ( B  -  C
)  e.  CC )
324, 1subcld 9719 . . . . 5  |-  ( ph  ->  ( A  -  C
)  e.  CC )
334, 1, 12subne0d 9728 . . . . 5  |-  ( ph  ->  ( A  -  C
)  =/=  0 )
3431, 32, 5, 33, 7divcan7d 10135 . . . 4  |-  ( ph  ->  ( ( ( B  -  C )  / 
( A  -  B
) )  /  (
( A  -  C
)  /  ( A  -  B ) ) )  =  ( ( B  -  C )  /  ( A  -  C ) ) )
352, 1, 4, 1, 12div2subd 10157 . . . 4  |-  ( ph  ->  ( ( B  -  C )  /  ( A  -  C )
)  =  ( ( C  -  B )  /  ( C  -  A ) ) )
3630, 34, 353eqtrrd 2480 . . 3  |-  ( ph  ->  ( ( C  -  B )  /  ( C  -  A )
)  =  ( -u ( ( C  -  B )  /  ( A  -  B )
)  /  ( 1  +  -u ( ( C  -  B )  / 
( A  -  B
) ) ) ) )
3736eleq1d 2509 . 2  |-  ( ph  ->  ( ( ( C  -  B )  / 
( C  -  A
) )  e.  ( 0 (,) 1 )  <-> 
( -u ( ( C  -  B )  / 
( A  -  B
) )  /  (
1  +  -u (
( C  -  B
)  /  ( A  -  B ) ) ) )  e.  ( 0 (,) 1 ) ) )
3817, 37bitr4d 256 1  |-  ( ph  ->  ( -u ( ( C  -  B )  /  ( A  -  B ) )  e.  RR+ 
<->  ( ( C  -  B )  /  ( C  -  A )
)  e.  ( 0 (,) 1 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    e. wcel 1756    =/= wne 2606  (class class class)co 6091   CCcc 9280   0cc0 9282   1c1 9283    + caddc 9285    - cmin 9595   -ucneg 9596    / cdiv 9993   RR+crp 10991   (,)cioo 11300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-po 4641  df-so 4642  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-1st 6577  df-2nd 6578  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-rp 10992  df-ioo 11304
This theorem is referenced by:  angpieqvd  22226
  Copyright terms: Public domain W3C validator