MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcnlem Structured version   Visualization version   GIF version

Theorem addcnlem 22475
Description: Lemma for addcn 22476, subcn 22477, and mulcn 22478. (Contributed by Mario Carneiro, 5-May-2014.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
addcn.j 𝐽 = (TopOpen‘ℂfld)
addcn.2 + :(ℂ × ℂ)⟶ℂ
addcn.3 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎))
Assertion
Ref Expression
addcnlem + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Distinct variable groups:   𝑎,𝑏,𝑐,𝑢,𝑣,𝑦,𝑧,𝐽   + ,𝑎,𝑏,𝑐,𝑢,𝑣,𝑦,𝑧

Proof of Theorem addcnlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 addcn.2 . 2 + :(ℂ × ℂ)⟶ℂ
2 addcn.3 . . . . 5 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎))
323coml 1264 . . . 4 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎))
4 ifcl 4080 . . . . . . 7 ((𝑦 ∈ ℝ+𝑧 ∈ ℝ+) → if(𝑦𝑧, 𝑦, 𝑧) ∈ ℝ+)
54adantl 481 . . . . . 6 (((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → if(𝑦𝑧, 𝑦, 𝑧) ∈ ℝ+)
6 simpll1 1093 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑏 ∈ ℂ)
7 simprl 790 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑢 ∈ ℂ)
8 eqid 2610 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
98cnmetdval 22384 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑏(abs ∘ − )𝑢) = (abs‘(𝑏𝑢)))
10 abssub 13914 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (abs‘(𝑏𝑢)) = (abs‘(𝑢𝑏)))
119, 10eqtrd 2644 . . . . . . . . . . . . 13 ((𝑏 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑏(abs ∘ − )𝑢) = (abs‘(𝑢𝑏)))
126, 7, 11syl2anc 691 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑏(abs ∘ − )𝑢) = (abs‘(𝑢𝑏)))
1312breq1d 4593 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑏(abs ∘ − )𝑢) < if(𝑦𝑧, 𝑦, 𝑧) ↔ (abs‘(𝑢𝑏)) < if(𝑦𝑧, 𝑦, 𝑧)))
147, 6subcld 10271 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢𝑏) ∈ ℂ)
1514abscld 14023 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝑢𝑏)) ∈ ℝ)
16 simplrl 796 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑦 ∈ ℝ+)
1716rpred 11748 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑦 ∈ ℝ)
18 simplrr 797 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑧 ∈ ℝ+)
1918rpred 11748 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑧 ∈ ℝ)
20 ltmin 11899 . . . . . . . . . . . 12 (((abs‘(𝑢𝑏)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((abs‘(𝑢𝑏)) < if(𝑦𝑧, 𝑦, 𝑧) ↔ ((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑢𝑏)) < 𝑧)))
2115, 17, 19, 20syl3anc 1318 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑢𝑏)) < if(𝑦𝑧, 𝑦, 𝑧) ↔ ((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑢𝑏)) < 𝑧)))
2213, 21bitrd 267 . . . . . . . . . 10 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑏(abs ∘ − )𝑢) < if(𝑦𝑧, 𝑦, 𝑧) ↔ ((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑢𝑏)) < 𝑧)))
23 simpl 472 . . . . . . . . . 10 (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑢𝑏)) < 𝑧) → (abs‘(𝑢𝑏)) < 𝑦)
2422, 23syl6bi 242 . . . . . . . . 9 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑏(abs ∘ − )𝑢) < if(𝑦𝑧, 𝑦, 𝑧) → (abs‘(𝑢𝑏)) < 𝑦))
25 simpll2 1094 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑐 ∈ ℂ)
26 simprr 792 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑣 ∈ ℂ)
278cnmetdval 22384 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑐(abs ∘ − )𝑣) = (abs‘(𝑐𝑣)))
28 abssub 13914 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (abs‘(𝑐𝑣)) = (abs‘(𝑣𝑐)))
2927, 28eqtrd 2644 . . . . . . . . . . . . 13 ((𝑐 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑐(abs ∘ − )𝑣) = (abs‘(𝑣𝑐)))
3025, 26, 29syl2anc 691 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑐(abs ∘ − )𝑣) = (abs‘(𝑣𝑐)))
3130breq1d 4593 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑐(abs ∘ − )𝑣) < if(𝑦𝑧, 𝑦, 𝑧) ↔ (abs‘(𝑣𝑐)) < if(𝑦𝑧, 𝑦, 𝑧)))
3226, 25subcld 10271 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑣𝑐) ∈ ℂ)
3332abscld 14023 . . . . . . . . . . . 12 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝑣𝑐)) ∈ ℝ)
34 ltmin 11899 . . . . . . . . . . . 12 (((abs‘(𝑣𝑐)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((abs‘(𝑣𝑐)) < if(𝑦𝑧, 𝑦, 𝑧) ↔ ((abs‘(𝑣𝑐)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧)))
3533, 17, 19, 34syl3anc 1318 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝑐)) < if(𝑦𝑧, 𝑦, 𝑧) ↔ ((abs‘(𝑣𝑐)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧)))
3631, 35bitrd 267 . . . . . . . . . 10 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑐(abs ∘ − )𝑣) < if(𝑦𝑧, 𝑦, 𝑧) ↔ ((abs‘(𝑣𝑐)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧)))
37 simpr 476 . . . . . . . . . 10 (((abs‘(𝑣𝑐)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘(𝑣𝑐)) < 𝑧)
3836, 37syl6bi 242 . . . . . . . . 9 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑐(abs ∘ − )𝑣) < if(𝑦𝑧, 𝑦, 𝑧) → (abs‘(𝑣𝑐)) < 𝑧))
3924, 38anim12d 584 . . . . . . . 8 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((𝑏(abs ∘ − )𝑢) < if(𝑦𝑧, 𝑦, 𝑧) ∧ (𝑐(abs ∘ − )𝑣) < if(𝑦𝑧, 𝑦, 𝑧)) → ((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧)))
401fovcl 6663 . . . . . . . . . . . 12 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏 + 𝑐) ∈ ℂ)
416, 25, 40syl2anc 691 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑏 + 𝑐) ∈ ℂ)
421fovcl 6663 . . . . . . . . . . . 12 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + 𝑣) ∈ ℂ)
4342adantl 481 . . . . . . . . . . 11 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 + 𝑣) ∈ ℂ)
448cnmetdval 22384 . . . . . . . . . . . 12 (((𝑏 + 𝑐) ∈ ℂ ∧ (𝑢 + 𝑣) ∈ ℂ) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) = (abs‘((𝑏 + 𝑐) − (𝑢 + 𝑣))))
45 abssub 13914 . . . . . . . . . . . 12 (((𝑏 + 𝑐) ∈ ℂ ∧ (𝑢 + 𝑣) ∈ ℂ) → (abs‘((𝑏 + 𝑐) − (𝑢 + 𝑣))) = (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))))
4644, 45eqtrd 2644 . . . . . . . . . . 11 (((𝑏 + 𝑐) ∈ ℂ ∧ (𝑢 + 𝑣) ∈ ℂ) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) = (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))))
4741, 43, 46syl2anc 691 . . . . . . . . . 10 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) = (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))))
4847breq1d 4593 . . . . . . . . 9 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎 ↔ (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎))
4948biimprd 237 . . . . . . . 8 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎 → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎))
5039, 49imim12d 79 . . . . . . 7 ((((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎) → (((𝑏(abs ∘ − )𝑢) < if(𝑦𝑧, 𝑦, 𝑧) ∧ (𝑐(abs ∘ − )𝑣) < if(𝑦𝑧, 𝑦, 𝑧)) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
5150ralimdvva 2947 . . . . . 6 (((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎) → ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < if(𝑦𝑧, 𝑦, 𝑧) ∧ (𝑐(abs ∘ − )𝑣) < if(𝑦𝑧, 𝑦, 𝑧)) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
52 breq2 4587 . . . . . . . . . 10 (𝑥 = if(𝑦𝑧, 𝑦, 𝑧) → ((𝑏(abs ∘ − )𝑢) < 𝑥 ↔ (𝑏(abs ∘ − )𝑢) < if(𝑦𝑧, 𝑦, 𝑧)))
53 breq2 4587 . . . . . . . . . 10 (𝑥 = if(𝑦𝑧, 𝑦, 𝑧) → ((𝑐(abs ∘ − )𝑣) < 𝑥 ↔ (𝑐(abs ∘ − )𝑣) < if(𝑦𝑧, 𝑦, 𝑧)))
5452, 53anbi12d 743 . . . . . . . . 9 (𝑥 = if(𝑦𝑧, 𝑦, 𝑧) → (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) ↔ ((𝑏(abs ∘ − )𝑢) < if(𝑦𝑧, 𝑦, 𝑧) ∧ (𝑐(abs ∘ − )𝑣) < if(𝑦𝑧, 𝑦, 𝑧))))
5554imbi1d 330 . . . . . . . 8 (𝑥 = if(𝑦𝑧, 𝑦, 𝑧) → ((((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎) ↔ (((𝑏(abs ∘ − )𝑢) < if(𝑦𝑧, 𝑦, 𝑧) ∧ (𝑐(abs ∘ − )𝑣) < if(𝑦𝑧, 𝑦, 𝑧)) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
56552ralbidv 2972 . . . . . . 7 (𝑥 = if(𝑦𝑧, 𝑦, 𝑧) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎) ↔ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < if(𝑦𝑧, 𝑦, 𝑧) ∧ (𝑐(abs ∘ − )𝑣) < if(𝑦𝑧, 𝑦, 𝑧)) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
5756rspcev 3282 . . . . . 6 ((if(𝑦𝑧, 𝑦, 𝑧) ∈ ℝ+ ∧ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < if(𝑦𝑧, 𝑦, 𝑧) ∧ (𝑐(abs ∘ − )𝑣) < if(𝑦𝑧, 𝑦, 𝑧)) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)) → ∃𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎))
585, 51, 57syl6an 566 . . . . 5 (((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎) → ∃𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
5958rexlimdvva 3020 . . . 4 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) → (∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎) → ∃𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
603, 59mpd 15 . . 3 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ 𝑎 ∈ ℝ+) → ∃𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎))
6160rgen3 2959 . 2 𝑏 ∈ ℂ ∀𝑐 ∈ ℂ ∀𝑎 ∈ ℝ+𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)
62 cnxmet 22386 . . 3 (abs ∘ − ) ∈ (∞Met‘ℂ)
63 addcn.j . . . . 5 𝐽 = (TopOpen‘ℂfld)
6463cnfldtopn 22395 . . . 4 𝐽 = (MetOpen‘(abs ∘ − ))
6564, 64, 64txmetcn 22163 . . 3 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) → ( + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ↔ ( + :(ℂ × ℂ)⟶ℂ ∧ ∀𝑏 ∈ ℂ ∀𝑐 ∈ ℂ ∀𝑎 ∈ ℝ+𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎))))
6662, 62, 62, 65mp3an 1416 . 2 ( + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ↔ ( + :(ℂ × ℂ)⟶ℂ ∧ ∀𝑏 ∈ ℂ ∀𝑐 ∈ ℂ ∀𝑎 ∈ ℝ+𝑥 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((𝑏(abs ∘ − )𝑢) < 𝑥 ∧ (𝑐(abs ∘ − )𝑣) < 𝑥) → ((𝑏 + 𝑐)(abs ∘ − )(𝑢 + 𝑣)) < 𝑎)))
671, 61, 66mpbir2an 957 1 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  ifcif 4036   class class class wbr 4583   × cxp 5036  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814   < clt 9953  cle 9954  cmin 10145  +crp 11708  abscabs 13822  TopOpenctopn 15905  ∞Metcxmt 19552  fldccnfld 19567   Cn ccn 20838   ×t ctx 21173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-cnp 20842  df-tx 21175  df-hmeo 21368  df-xms 21935  df-tms 21937
This theorem is referenced by:  addcn  22476  subcn  22477  mulcn  22478
  Copyright terms: Public domain W3C validator